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Theory of Some Advanced Numerical Methods

Duy-Ky Nguyen 08-05-96

1. Extrema of Functions with Equality Constraints: Langrange Multiplier

Theorem 1.1:

A necessary condition for
Extremize f(x)
x (1.1)
subject to g(x)=0

A _y
0
X (1.2)
r_y
OA
where
L(x,a)= f(x)+A .g(x) (1.3)
Proof:
Since f(x) has an extremum, the total differential of f must be equal to zero, ie.
n o of /
ar=> T ax =T x-o (1.4)
i1 aXi OX
As g(x) =0, we have
n /
dg=3 2 ox -9 x-0 (1.5)
i=1 8Xi OX
By Eq.(1.3), the total differential of L is
dL(x,A) = df (x)+A’.dg(x) (1.6)
or
/ /
dL(x,2) LN (1.7)
oX oA
From Egs.(1.4) to (1.6), we get
dL=0 (1.8)

This equality must be hold for any x and A, so Eq.(1.2) is achieved.
Q.E.D.
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Remark 1.1:

Note that the constraint is

9(x)=0
if
g(x)=c
then let
g(x)=g(x)-c
or
§(x)=c—-g(x)

and we have the required constraint, that is §(x) =0.

2. Steepest Descent Method

For a function f(x): R" — R, and a given point x,, our interest is to find the next point x, ,, to minimize

the function f. Let

d=X X

k+l — Nk

then the Taylor expansion of f at x, is
f(x, +8)=f +Vf .8+18 .V .6+-=f +0,8+15".Q, .5+

and our concern is to find & to minimize f.

Let o and u be the magnitude and the unit vector of & respectively, then Eq.(2.2) can be read as
f(x, +8)=f +a.gu+ta’u’.Q, . u+

or
fx, +ou)=f +o.f +L1a’ £+

SO
/ / 1 /
f,=g,.u f ' =u.Q,.u

2.1)

2.2)

(2.3)

(2.4)

(2.5)

The use of the negative of the gradient as a direction for minimization was first made by Cauchy in 1847. It

is known as the steepest descent method since for the same magnitude of &, this direction produces the

largest decrease at that point. We have the following theorem for this method
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Theorem 2.1:

The gradient vector represents the direction of the steepest ascent, and its opposite direction is the steepest

descent.

Proof:
For a function f: R" — R, we have the differentiation

n

df = zﬁdxi =V'f.dx
i-1 OX;
If u denotes the unit vector in the direction of dx, we have
dx =ds.u
where

ds=[dx|, < ds*= def
i=1
and
Jul, =1 < u'u=1

Then Eq.(2.6) can be read as
df /

=V f.u
ds
or
o(u)=g'u
where
u) =£, g=Vf
ds

To find a direction u to extremize Eq.(2.10), the Lagrange multiplier method is used with
L(u,a) = o(u)+2(1-u'u)

where A is the Lagrange multiplier to be determined. We have the necessary condition as

g
-
oL 2||ul|
—=0g-2u=0 = 2Muu=g =
ou g
u=—
2\
A Wu=0 > vu=1 = Jul =1
O\
so Eq.(2.13) becomes
[+ =3l
(1) If A >0, then Eq.(2.15) becomes
r=tlol = u=
]

From Eq.(2.10), we have
df
o=[g|>0 = —>0
ds

so it is the steepest ascent direction.

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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(2) If A <0, then Eq.(2.15) becomes

g
A=—%lg = u=—-—— (2.18)
[
From Eq.(2.10), we have
df
¢=—Jg|<0 = —<0 (2.19)
ds
so it is the steepest descent direction.
Q.E.D.
3. Newton Method
Theorem 3.1: Newton Method
Consider the second-order approximation to f based on the Taylor expansion
f(xk+6k)z fk+g/k6k+%6L'Qk'6k (3.1)
if Q, is positive-definite, then
Minimize f(x, +8,) = 8, =-Q,g, (3.2)
L
this is the exact line-search condition.
Proof:
A necessary condition for an extremum is
of -
—=0 = ¢,+Q8,=0 = § =-Q]g,
0%,
since Q, is positive-definite and by Eq.(2.5), this extremum is a minimum.
Q.E.D.

Remark 3.1: Newton method for univariable function
The minimum is a solution of the equation
g(x)=0
and the Newton method gives
-1 -1
Xpr = X +8, =X, = Q, g(xk)= X, =V g(xk)'g(xk)

for a univariable function, we have

as we have known.
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Theorem 3.2: Convergence of Newton Method
If 8, forms a basis which spans the vector space of x, then the Newton method terminates after n

iterations .

Proof:
Let x_ and x, be the minimum and a given starting point. Since §,,8,,---,8,_, are n independent vectors

to form a basis, we have

n-1 n-1
X —Xo =2 0,8, = X =X, +2,0,8, (3.3)
i=0 i=0
If we define
k-1
X, =Xg+ > a8, (3.4)
j=0
then we obtain
Xy =X+, 8, (3.5)
thus
X =X (3.6)
Q.E.D.
Remark 3.2:

Newton direction 5, = —Q,'g, is a descent direction since

df (x, +,8,)

da

as Q, is positive-definite and so is Q,".

=v't.8,=9,8, =-09,Q,'g, <0

k

4. Quasi-Newton Methods

The main disadvantage of Newton method is that the Hessian (second derivative matrix) must be supplied.
However methods closely related to Newton method can be derived when only the gradient (first derivative
vector) is available. The most obvious is a finite difference Newton method in which increments h, in each
coordinate direction e, are taken sa as to estimate Q, by differences in gradient. That is to say, the matrix o)

whose i-th column is
_ g(xk +hiei)—g(xk)
h.

‘ki -
Then Q is made symmetric by taking %(Q+QT) and the resulting matrix is used to replace Q, in Newton

method. Disadvantage of this method is the resulting matrix may not be positive-definite (requiring
modification technique), n gradient evaluations are required to compute Q. The conjugate-gradient method
(Hestenes and Stiefel 1952, Fletcher and Reeves 1964) is in this direction where the computation of Q is
avoided by using a line-search, but the positive-definiteness of Q is not guaranteed, so the necessary

condition for the existence of a minimum is not satisfied.
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The above disadvantages are all avoided in the much more important class of quasi-Newton methods where
an estimate of the Hessian Q, is maintained to be symmetric and positive-definite. The Hessian is estimated

using the first-order approximation of the gradient
g(xk+l)zg(xk)+Qk8k (4.1)

To ensure the minimum due to truncation of the Taylor series in the function and its gradient, the quasi-
Newton method minimizes the function in the direction s, by introducing a step length o and a search

direction s,
Xy =X, +0S,
where o is determined as
Miniamize f(xk +ask) (4.2)
Remark 4.1:
Therefore, in the rest of this note, we use
8 =S =X =X ¥y =04 — 0y (4.3)

Quasi-Newton methods uses directly the inverse of Q, to simplify the process, so the exact line-search

condition Eq.(3.2) becomes

s, =—H,g,, H, :Q;l (4.4)
From Eq.(4.1), the quasi-Newton condition below must be satisfied
8 =H .7, (4.5)

Since Eq.(4.5) can be determined after the line search, H, , is used instead of H, in order to estimate Q;l.

Thus a quasi-Newton algorithm is as below

(0)] H, =1, X,:given

) s, =—H, 9,
(2)  Minimize f(xk +ask), line search

(3 X, =X, +os, =X, +5,

4 H,.,=H,+E,

where E, to be determined such that

e H,,, issymmetric and positive-definite and converges to Q," (the Newton method);

e 3, 'sare linear independent (convergence of Newton method)

We will find the smallest correction E, in the sense of some norm. To a certain extent, this would tend to

keep the elements of H from growing too large, which might cause an undesirable instability. The simplest

type of norm is
N.(E)= Y E? =trace(EE") (4.6)

ij
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If we include one degree of freedom for flexibily, E is transformed as
N,, (E) = trace( WEWE' ) (4.7)
where
wW=w (4.8)

then we have the following theorem

Theorem 4.1: BFGS Formula (Broyden, Fletcher, Greenstadt/Goldfarb, Shanno)

If
H., =H+E (4.9
then a solution of the problem
Minimize|E|,, (4.10)
E
subject to the conditions
E'=E and n=Ey (4.11)
is
/ / / /
Hy | 86 H+ Hyd
Yo )yd Y
or
'Hy ) ss’ [ sy'H+Hys'
Heo=H+ 1410 2 X 2270 (4.12.b)
Ys Jvs YSs
where all the subscript k in LHS are omitted, and
n=%6-Hy, y=9¢,,-9,, d=08 (4.13)
and W is chosen such that
wW=w, y=wWs (4.14)
Note that conditions in Eq.(4.11) correspond to the symmetry and the quasi-Newton conditions.
Proof:
From Eq.(4.9), we have from the quasi-Newton condition Eq.(4.5)
H.,,y=Hy+Ey = Ey=H,,y-Hy=8-Hy=n
and Eq.(4.14) is equivalent to
W=H2 (4.15)

since by the quasi-Newton condition, we have
H.,y=8 = y=H_8=Ws

After squaring the norm, a suitable Lagrangian function is
L7 %trace(WE’WE)Hrace[A’ (E'- E)] ~AW(Ey -n)= %trace(WE'WE)+trace[A’(E’ - E)]—trace[A/W(Ey -]

(4.16)

where A is a Lagrange multiplier matrix for the contraint E' = E (use of the trace is just a convenient way
of summing A (Eiﬁ - Eij) overal i, j) and A'W is a vector Lagrange multipliers for the constraint n = Ey . %

must be stationary with respect to E, A and A.. Setting derivatives of with respect to A and A to zero just

gives the constraints in Eq.(4.11).
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For the derivative with respect to E, using Frechet derivative operator with the last term is dE’ and the
property
trace(AB) = trace(BA) = trace(A'B’ ) = trace(B'A’)
we have
df, (E,dE) = trace[WdE/WE] +trace[WE’WdE] = trace[WEWdE/ ] +trace[W’EW’dE’] = trace[ZWEWdE/]
df, (E, dE) = trace[ A'dE’ — A'dE] = trace[ A'dE’ - AdE']
df, (E,dE) = trace[)»’WdEy] = trace[ka/dE’]

SO
o7 IWEW+A —-A-WAy' =0
=0 =
oE LWE'W+A-AT-A'W=0

thus, by Eq.(4.14) we can solve for E
WEW = WAy’ +7A'W = WA’ W +WAS'W = E=248"+8) (4.17)
substituting into n = Ey , we solve for A

-8 —(Ay)s
n=(a8'+a )y = a=- 8/(y Y)=11 i’yY) (4.18)

In the sequel, note that
y'8=8"y (4.19)
Pre-multiplying Eq.(4.18) by y' gives
/ / /
yn-\Ay)y'd !
YA =# = (ya)sly=y'n-(Wyly's = wy=21T1
Y 28y
so Eq.(4.18) becomes

/ / / /
—H Hy |6 Hy |8
n-9% Y? S—HY—Siy (6-Hy) 5""7‘(1—7 YJZ —HY+[1+Y YJ

28 28’ &'y 'y )2
%= / Y _ / LA , = / (4.20)
3y 3y 3y 3y
Substituting into Eq.(4.17) gives
! ! ! /
—y/H+[1+y 347]5 —Hy+[1+Y/HY]8 —&Y’H—Hys’+[1+y 347 ]88’ , o ,
E-5 8y )2 | 8y )24 _ 8y [y, 1'Hy |88 Sy'HHy
8/7 8/7 8/7 S/y 8/y 8’7
Q.E.D.
Theorem 4.2: Dual BFGS Formula
If
B=H" (4.21)
then the BFGS formula has the dual
! !
yy BddB
B,.,= - (4.22)

+_
v's &'Bs
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Proof:

Multiply Egs.(4.12) and (4.22), using Eq.(4.21), we have
B . H |

k+1! Tkl T

Q.E.D.

Theorem 4.3: Positive-Definiteness of BFGS Formula
If y,8, >0, Vk,iey'8 >0, the BFGS formula preserves positive definite matrices H.

Proof:
Since H =H, is positive-definite, so is B=B,, it can be decomposed using Choleski factors as B = L'L,

2
/ / / a’b
z’[B+W——BESES B]z=z’[WT]z+a’a—( )

v's &5'BS v'8s b'b

where a=L'z, b=L'8. The first term is positive by the assumption, the last 2 terms is positive by Cauchy

then

inequality. Thus the proof is completed.
Q.E.D.

For a quadratic function, Theorem 3.2 guarantees the Newton method with the exact line-search will
terminate (reach the minimum) after n iterations for n linear independent directions §,,8,,---,8,,. The

theorem below also guarantees the BFGS method will terminate after n iterations and H will converge to Q *

on a quadratic function.

Theorem 4.4: Convergence of BFGS Method
The BFGS method with the exact line-search will terminate after n iterations on a quadratic function,

and the following hold forall i =1,2,---,n

Conjugacy 8,Q8, =0, j<i-1 (1,2,-+,i-1), for all subset (4.23)
Quasi-Newton condition 8, =H, v, J<i (1,2,--i), forall subset (4.24)
Q™" Convergence H.,=Q" (4.25)
Proof:

Consider a quadratic function

f(x)=1x'Qx+b'x+c (4.26)
S0
VE(x)=g(x)=Qx+b (4.27)
thus
X, =X, +8, = Q8,=0,,,-0, =Y,
or

Yi =01 —0; = Q8 (4.28)
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where o, minimizes the function in the direction s, (exact line search)

df(xi +aisi)

Minimize f(x, +o,5,) = =Vi(x +as,).s =gl s =0

o da;

so the exact line-search condition at point x; is
9,8, =0 (4.29)

In the sequel, we employ the following property
u'v=v'u, vuveR" (4.30)
(1) By Egs.(4.2) and (4.28), we have
!
6:+1Q8i =(a‘i+1si+1) Yi= _ai+1(gil+lHi+1)yi (4.31)

From the BFGS formula in Eq.(4.12), we have
! / / /
Hy. | 838: 6y H +H 1y
8:+1Q6i :_ai+1gi/+1[Hi +(1+Y| iYi ] i _[ Y tHY0; ]]YI

Yilsi Yi/8i Yi/8i
/ / / /
Hy. | 83 0y H +H.y.d.
6:+1Q8i =_a‘i+1gi/+1 Hyy, + 1+YI / 7, . I, —Y— a8 I, v Vi
vid, ) 19, v:9,
/ /
Hy. Hy.
8i/+1Q8i :_ai+lgi/+l 1+u X 'YI—ITYI :_gi/+18i (4.32)
vid, v:9;
By Eq.(4.29), we have
8i/+lQ8i :_gi/+18i =0 (4.33)

Next, we will prove 5i/+1Q8H =0, by Egs.(4.28), (4.29) and (4.33), we have
gi/+18i—1 = (gi +Q3, )/8i—1 = gilsi-l +8i/Q8i—1 =0
so from Eq.(4.32), we get
8,,Q8, , =-a,,08, ,=0

By induction we obtain Eq.(4.23) and the exact line-search condition holds for all subspace of Xx;

98, =0, j<i-1 (4.34)

(2) By the quasi-Newton condition Eq.(4.5), we have
3, =H._v, (4.35)

For j<i-1, we have

/ / / / / / / /
H.y. 5. v H +H.vy.8: H.y. 3. v-H +H.v.8:

Hmvi1—{Hi+[1+y',éy'].8',z' _[8.7. .; 8 ﬂYu—si1+[1+Y',8'Y']-8',2'Yu—[s'y' .l+8 .Y.S.]yil
Yi0; Yi0i Yi0; Yi0i i0 Yi0;

By Egs.(4.28) and (4.23), we have
8y, , =5 ,Q8, =0
and
yiHy, =8y, =8_,Q8 =0
SO

8,,=H

i-1 i1V i1




Theory of Some Numerical Methods used in Neu-Net 14

By induction, we obtain Eq.(4.24).

(3) By Eqgs.(4.24) and (4.27), we have

§, =Hy, =HQ3, j<i-1

j?

since j =1,2,---,n, we must have

8j = Hn+1Q8j
thus Eq.(4.25) is obtained.
Q.E.D.

Thus the quasi-Newton BFGS algorithm is
(0) Initialize

XoHy =1
(1) Direction

S =—H, 9,

(2) Line search
Minimize f(xk +ocksk)

ag

X =X tou S,

(3) Update Hessian (BFGS)

/ / / /
y Hy | ss sy H+Hys
Hk+1:H+[l+ ; ]'_/_[—,} Y =0k~ O
Ys )vys YS
(4) Terminate
If |9,... || < & then terminate, else goto step (1)
Remark 4.2:

To save memory, let
(=1
in the update formula of BFGS, we have
/ / / !
Y.Ye |SS S.Y +7.S
Skt = Hia9i1 = =0 _[1"‘%]%9“1 _[w]gm
Se¥ JSkY« ST«

but by Eq.(4.29), we have

/
$¢9x. =0
SO
S, 7,9
_ ki k _ _ T kIk+1
Sker = 70k — / ) —_gk+1_[3k+1skv Bk+l -
S Y SeY¥k

we will see in the sequel that this is the conjugate-gradient formula.
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5. Conjugate-Gradient Method (Hestenes and Stiefel 1952, Fletcher and Reeves 1964)

Suppose we want to find the minimum of a second-order approximation Taylor expansion
f(x)=c'x+1x'Qx (5.1)
S0
g(x)=c+Qx (5.2)

and Q: symmetric, positive-definite second-order derivative matrix.

Given k+1 linearly independent vectors s,,s,,--,s, €R". Let S, e R be the matrix with columns

Sy.S;, S, We have

Minimize f(x+S,w)= Minimize {w'slg, +1w's.Qs,w+x.(g, —Qx,)} (5.3)
then the minimum is
1
W:_(S/kQSk) S/kgk (5.4)
s0
1
Xk+1:Xk_Sk(S/stk) SLgk (5.5)
Note that
slg,., =S.( )=s! ~Qs,(s.0s,) 'slg, |=S'g, -Slg, =0
kgk+l_ k C+ka+1 Yk C+ka Q k kQ k kgk - kgk kgk_
S0
9,5 =0; i=0,k
by induction

g;s;=0; i<]j (5.6)

Great simplifications occur in Eq.(5.5) when the matrix S,QS, is diagonal. Suppose that k+1 vectors

{sj ,j=0,-, k} are mutually conjugate with respect to the matrix Q, ie. conjugacy condition is

5iQs, =0; i#]j:0, .k (5.7)
When Eq.(5.7) holds, Eq.(5.5) becomes
Xy =X, +0S, (5.8)
where
/
9,
O(’k = —/k—k (59)
s, Qs,
From Eq.(5.2), we have
Yi=0%ia—9 :Q(Xi+1_xi):aiQSi (5.10)

By Eq.(5.7), we obtain the orthogonality condition equivalent to the conjugacy condition
¥'s, =0, i<j (5.11)
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Now we create a set of mutually conjugate directions by taking s, = —g, (the steepest descent direction) and

computing each subsequent direction as
k

S :_gk+1+Bk+15k :_gk+1+ZBiSi (5.12)

i=0

By Eq.(5.6), we have
9,0, =0, i<]j (5.13)

For the conjugacy condition, we must have
/ /
0=s,,,Qs, = _(gk+l + Bk+1sk) Qs,

from Eq.(5.1), we obtain

/ /
Bk+1 :_gk+lQSk :_gk+lyk (514)

/ /
s, Qs, S

by Egs.(5.11) to (5.13), we have

k-1
/
S/kyk :YL K :Y/k(_gk +2Bisij:_y/kgk :_(gk+1_gk) ] :g/kgk
i-0

SO
/ /
B, = Vi _ _ Gk
k+1 / /
SV 9,9

Thus the conjugate-gradient algorithm is

(0) Initialize Xy, Hy =1
(1) Direction
S, =—H, 9,

(2) Line search
Minimizef(xk+aksk) = X =X 0S8,

13
(3) Update direction
Ska1 = ~Yia +BraSi
where

/ /
B, = 9V YeaaGia
k+1 — '

; / Y = Ok — 9k
S Y« 9,9
(4) Terminate
If |,... | < & then terminate, else goto step (1)
Remark 5.1:
/
B = %: Fletcher-Reeves (5.15.3)
9,9
(gk 1_gk)/gk1 i
1= %: Polak-Ribiere (5.15.b)
9,9
g:<+l(gk+l_gk) .
vy = ——————— . Hestenes-Stiefel (5.15.c)

di(gk-ﬂ _gk)
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6. Sum of Squares

Consider the function

() =33 F200 = 4 |FOO° )
where
F(x)=[F(x), -, F,(x)] (6.2)
then
of & _oF oF'
I N =l el 6.3
2 "2 (63)
and
oF’ )
g(X)=Vf(X)=a—XF(X)=J (x)F(x) (6.4)
where
OF, /ox oF /ox, - OF/ox,
= e o (65)
o OF,/ox| |oF,/ox, - OF,/ox,

For the second-order derivative matrix, we have

2 m 2 /
Of _J|oRoR [ O | OFoF . oF 66
OX, 0%, | OX, 90X, OX,0%; | OX, OX, OX, OX;
and
Q(x) =V’ f(x) =3 (x)I(X)+F' (x)V’F(x) = I’ (x)I(X) + G(x) (6.7)
6.1. Gauss-Newton Method
From the Newton condition
Q8, =-9, (6.8)
we have from Egs.(6.4) and (6.7)
(303, +G, )8, =-J'F, (6.9)
If F, —> 0, then G, — 0, by Eq.(6.9) we obtain
‘Jlk‘JkSk :_‘J:(Fk
or
3 (3,8, +F)=0 (6.10)

hence an algorithm

/ 1
Xk+1:Xk+8k’ 8k:_(‘]k‘]k) JF
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6.2. Levenberg-Marquardt Method (Levenberg 1944, Marquardt 1963)
We modify Eq.(6.9) to have

(‘]{(‘]k—"—?\‘klk)sk =-0y (6.11)

thus
A —>0=L-M>G-N

A, —> o = L—M — S— D (steepest descent)

hence an algorithm

| 1
Xk+l:Xk+8k’ 8k:_(‘]k‘]k+7\‘k|k) '

7. Cubic Line Search

The most efficient line search is the cubic interpolation proposed by Davidon in 1959 for the following

problem
Minimize f(x, +hd, ) = Minimize  (h)
h h

Based on h,x, and d,, this technique finds 2 points x, and x, that bracket the minimum then uses

h,f,f/ f f tofitthe following cubic polynomial in order to compuite the minimal step h”

Yp?p’ g’ q
y(h)=a+bh+ch® +dh®
v’ (h) =b+2ch+3dh?
v' (h)=2c+6dh
then the minimum is the solution of y'(h") =0 and y' (h")> 0, ie.

. _ —c++/c? —3bd

h
3d
since
v" (n")=2vc? —3bd
We have
f’(h):%: vi(x, +hd,).d] =g(x, +hd,).d]
thus

fy=1'(0)=0(x,).df =g,d
£l = f(h)=g(x, +hd).d] =g,d

Then a, b, ¢, d are solutions of the equation set below
f(0)=f, =a

f(h)=f, =a+bh+ch®+dh’

f'(h) =T, =b+2ch+3dh’

(7.1)
(7.2)
(7.3)

(7.4)

(7.5)

(7.6)
(7.7)

(7.8)
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S0
8 - 2+ f f)+1, +2z
a=f, b="f, c=- , d= ; (7.9)
h 3h
where
o 3(f 1)
z:f;+fq/+ ( P (7.10)
h
The minimum Eq.(7.4) becomes
. w+z+f) w+z-f) (5.16)
20+ 8+, 2248 -1, '
where
w=,z° — ) f (7.11)

The choice of h is at our discretion. If f/ <0 we would take h>0, ie. take a step in the direction of

p

decreasing f(h); otherwise we would take h < 0. The magnitude of h is such that the interval [0,h] includes

the minimum. This will be so if fq > fp or if fq/ > 0. When neither of these conditions is satisfied, we double

the value of h, repeatedly if necessary, until our interval does bracket a minimum.

The problem of finding an initial value for h remains. There are real difficulties in finding a value that will

be satisfactory for all problems. Davidon and Fletcher and Powell suggest
2(f,-7)
ff“/

p

h, = min{1, -

where f_ is an estimate of the minimum of f(h).

A

[
—h
—ny

\/

—h

\

(7.12)
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The cubic algorithm is below

0)

o)

O]

®)

Guess f_
Let x, =X,

Find the first point P such that f, <0

Repeat
) 2(F -7

m

z 2l T . p
f=f(x,), f =g,d, h=minig|—> "
f

P
X, =X, = hd, /I Reverse serach direction to get P

Until f, <0

Find the second point Q such that f; >0 or f > f,

Repeat
h=h
X, =X, +hd,
f-flx) T =g
h=2h /I Double step to get Q

. T/ e rt
Until fq >0 or fq > fp

Find the minimum after having 2 points
IFl 3( fp - fq)
ot +——m—
h

2 rary
w:\/max(o,z - fp fq)

re

. W+2Z-— fp

= re) re)
27+ fq - fp

7=f

8. Conclusion

The steepest descent method minimizes a function on its first-order approximation in Taylor series, while the

Newton and quasi-Newton methods use the second-order approximation. The main advantage of the Newton

method is it reaches the minimum point after n iterations from any given point (convergence). The main

disadvantages of the Newton method are requirement of an inverse of the positive-definite Hessian (second

derivative matrix) which is mathematically expensive and a mechanism to guarantee the positive-

definiteness.
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The quasi-Newton method does have the advantage (convergence) and does not have the disadvantages

(Hessian) of the Newton method. The main features of quasi-Newton method are
e H, is maintained to be symmetric and positive-definite;

e H > Qi’l after n iterations from any given symmetric and positive-definite H, for an exact line-search

e X, - X after n iterations from any given point X, for an exact line-search

For an inexact line-search, the number of iterations increases accordingly.

When there is a memory limitation we can use the conjugate-gradient method, but it is slower than the quasi-
Newton method since it estimates H, as | in the BFGS update formula.



