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Abstract 
 

 

 In this thesis, advanced design techniques in the sliding-mode control (SMC) are presented. All the 

proposed designs are developed in a unified manner for robust analog/digital sliding-mode 

controllers/observers, robust integral SMC, continuous and discontinuous SMC designs, sliding-mode fuzzy 

control and for MIMO uncertain nonlinear systems. The stability of fuzzy control is developed and sliding-

mode fuzzy control is presented on basis of the digital SMC design. 

 

 A hyperplane design is fully presented for both eigenvalue allocation and optimal sliding-mode 

approaches for linear and nonlinear systems. Two eigenvalue types are identified: sliding-eigenvalues and 

hyperplane-eigenvalues which are as desired sliding-eigenvalues.  The concept of sliding-eigenvalues is 

employed to establish a stability criterion and a sufficient invariance condition. 

 

 The proposed analysis of the chattering problem is more comprehensive and precise than the current 

works. Moreover our approach is in a unified manner for the saturate function and unitvector function. In 

addition, the introduction of the hyperbolic tangent to replace the saturate and unitvector functions for more 

convenient and efficient. 

 

 In the proposed continuous SMC design, the control function is not only continuous but also linear. The 

continuous nature of this control function helps to eliminate the chattering problem found in the 

discontinuous SMC which is known as the variable-structure system (VSS) control. The advantage of the 

control function being linear is that some fundamental concepts of SMC design can be explained from the 

linear control theory framework. This leads us to propose some novel SMC designs such as a new 

discontinuous SMC which alleviates the chattering problem, discrete-time SMC with both continuous and 

discontinuous control functions, continuous-time and discrete-time sliding-mode observers, fuzzy SMC, 

stability of fuzzy control, etc. 

 

 A new robust discrete-time sliding-mode controller-observer design is fully presented for both 

discontinuous SMC (VSS) and continuous SMC control functions. A high sampling rate is proved to be a 

necessary condition for a discrete-time SMC; under no uncertainty, this condition reduces to the stability 

criterion of unit circle in the Z-domain. 

 

 For the fuzzy control, we prove that a typical fuzzy rulebase can satisfy the Lyapunov sliding condition 

so the stability of a fuzzy control is guaranteed by the Lyapunov stability theorem. This can be seen as a 

stability criterion for the fuzzy control theory. 
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 To design a stable sliding-mode fuzzy controller, a fuzzy mechanism is used to minimize a sliding 

variable s instead of using the sliding condition as in the sliding mode control. In a typical fuzzy rulebase, it 

may not be convenient to use more than 2 entries, we can use 1 entry for s and the other for sum of s, and 

hence a possible steady-state error may be eliminated by this I-action. In a fuzzy control, the problems are 

how to choose the gains for error and error change and a possible chattering. Using the sliding-mode control 

theory, these gains can be determined by a hyperplane and the chattering problem can be solved since the 

system dynamics are taken into account 

 

 We develop a new fuzzy identification scheme which is simpler to implement than the current approach. 

The fuzzy inference is employed to obtain the most potential model from some rough mathematical models 

from experiments using a proposed practical system identification. A fuzzy model by the proposed scheme 

can be a solution to the conservative problem. 

 

     All theoretical results are consistent with experimental results on Ball-Hoop system, such as infinite gain 

of the switching function may cause excitation of unmodelled high-frequency; slow-down system responses 

due to low gain of sliding function; performances of continuous SMC, continuous pseudo-SMC (TanH 

SMC) and sliding-mode fuzzy control. 

 



 

Advanced Design Techniques in Sliding-Mode Control:  
Introduction 

 

 

1. MOTIVATION 

 In  real dynamical systems, it is impossible to avoid uncertainties due to imperfect modelling, due to the 

environment such as temperature, pressure... and  external disturbances. So the crucial demand is a solution 

to the robust control problem for uncertain systems. One solution to this problem is H-Infinity Control, 

however it can deal with uncertain linear systems only. A more general solution is Sliding-Mode Control 

(SMC) since it is simpler than H-Infinity Control and it can deal with both uncertain linear and nonlinear 

systems. 
 
 

2. METHODOLOGY 

 Our approaches are kept as simple and practically precise as possible compared to complicated and 

precise approaches as in Ryan et al 1987, Spurgeon et al. 1993, Edwards et al. 1996. Proposed designs are 

put in theorems for clarity, results can be quickly found in theorems and can be checked in their proofs. All 

experimental results are consistent with the theoretical results. 
 
 

3. RESULTS 

 New robust analog-discrete discontinuous-continuous sliding mode controller-observer designs are 

presented. The stability of fuzzy control is developed and sliding-mode fuzzy control is presented on basis of 

the discrete-time SMC design. All the proposed designs are developed in a unified manner for robust analog-

discrete-time sliding-mode controllers, robust analog-discrete sliding-mode observers, continuous and 

discontinuous designs, sliding-mode fuzzy control and for MIMO uncertain nonlinear systems. 
 

 In the discontinuous design, the chattering problem is analyzed comprehensively as opposed to the 

analysis in the current literature. Alternatively to the current literature, our proposed approach is in a unified 

manner for all sliding functions (saturate, unitvector and hyperbolic tangent) where the hyperbolic tangent 

function is proposed due to its availability as a standard mathematical function. Based on the sliding-mode 

mechanism, a design rule is proposed to guarantee an existence of the sliding mode since the invariance 

property is with this mode. A new reaching control design is proposed to include system dynamics for 

efficient SMC designs, this is not the case in the current literature. 
 

 In the continuous design, the control function is not only continuous but also linear. The continuous 

nature of this control function helps to eliminate the chattering problem found in the discontinuous sliding-

mode control (SMC) which is known as the variable-structure system (VSS) control. The advantage of the 

control function being linear is that some fundamental concepts of SMC design can be explained from the 

linear control theory framework. 
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3.1. Chapter 1: Sliding Mode Control Background 

 In the sliding-mode control theory, control dynamics have 2 sequential modes, the first is the reaching 

mode and the second is the sliding mode. The Lyapunov sliding condition forces system states to reach a 

hyperplane and keeps them sliding on this hyperplane, so a SMC design is composed of 2 phases, hyperplane 

design and controller design. First, a hyperplane is designed via the pole-placement approach as in the state-

space control, then a controller design is based on the sliding condition. The stability is guaranteed by the 

sliding condition (Lyapunov Stability Criterion Theorem) and by a stable hyperplane (stable designer-

chosen pole-placement). In the reaching mode, the control dynamics depend on system parameters; but in the 

sliding mode they depend on the hyperplane, this is the invariance property of the sliding mode. 
 

 In this chapter, we revise some SMC terminologies such as: hyperplane, sliding condition, sliding 

margin, equivalent control, the reaching and sliding modes. Some numerical examples are used to illustrate 

how SMC can handle uncertain systems and non-linear systems. 
 
 

3.2. Chapter 2: Sliding Hyperplane Design 

 In this chapter, a hyperplane design is fully presented for both eigenvalue allocation and optimal sliding-

mode approaches in a unified manner for linear and nonlinear systems. We identify 2 types of eigenvalues: 

sliding-eigenvalue and hyperplane-eigenvalue. Sliding-eigenvalues determines the dynamics of the system 

states in the sliding mode. Hyperplane-eigenvalues are the desired sliding-eigenvalues that represent the 

expected dynamics of the system states in the sliding mode. In addition, the concept of sliding-eigenvalue is 

conveniently applied in the stability problem and the invariance property (Chapter 3, 4). On the basis of the 

partition transformation method for linear systems in Utkin  et al. 1978, we propose a direct allocation 

method that may be the simplest way to see what the invariance property really means (Chapter 3) and 

extendable into nonlinear systems (Chapter 7). Alternatively, we propose a direct calculation method to 

reduce the computational effort compared to the partition transformation method. A hyperplane 

normalization is proposed to greatly simplify computation of a control function. 
 

 Another approach to design a hyperplane is based on the optimal sliding dynamics: error and 

error/energy optimizations. To complement the work in the Utkin paper on the error/energy optimization 

(Utkin et al. 1978), proofs of the theorems and a solution to the optimal problem are presented in this 

chapter. 
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3.3. Chapter 3: A New Variable-Structure System Controller Design 

 In this chapter, a  Variable-Structure System (VSS) controller design will be fully developed in a unified 

manner that is extendable into robust control (Chapter 4) and MIMO nonlinear system (Chapter 7). A VSS 

control is a discontinuous sliding mode control (SMC). Based on the concept of sliding-eigenvalues 

introduced in Chapter 2, we propose a stability criterion which is much simpler than the current one. By the 

sliding condition, a control function is first computed in an if-form as in Utkin 1977, we then propose a 

technique to convert this form into a compact form to facilitate controller implementations. We propose a 

sufficient condition as a design rule to ensure the reaching mode will terminate in a finite time, hence the 

sliding mode can exist, because the invariance property is with the sliding mode only. A new reaching 

control design is proposed to include system dynamics for an efficient SMC design, this is not the case in the 

current literature. 
 

 Alternative to the chattering problem analysis in Slotine  et al 1983, we propose a comprehensive 

analysis that allows a unified approach for both the saturate (Slotine et al. 1983) and unitvector functions 

(Ryan  et al. 1984, Spurgeon 1992). In addition, the introduction of the hyperbolic tangent (TanH) to replace 

the saturate and unitvector functions for more convenient since TanH is a standard mathematical function. 

The performance of using the sliding functions (saturate, unitvector and hyperbolic tangent functions) in 

place of the switching function is analyzed in terms of steady-state error, response speed. A design scheme is 

proposed to cope with limitations arised from these replacements (Example 7.6). 
 

 A VSS control is based on a state-space model, an I-action may be required to eliminate a steady-state 

error. In Chern et al. 1991, an integral of error has been used, however it is a pseudo-SMC because the larger 

controller gain the closer the sliding mode. In Chang 1991, an integral sliding condition has been proposed 

using the same system order, however this approach has some limitation. Alternatively, we propose an 

integral VSS control by augmenting the order of a system model then the controller is designed in a unified 

manner as in the normal case without integral. It can solve the problem of pseudo-SMC in Chern et al. 1991 

and cope with limitation in Chang 1991 (Example 3.9). 
 
 

3.4. Chapter 4: A New Robust Sliding Mode Controller-Observer Design 

 In this chapter, a new robust sliding mode controller (SMC) design is fully presented in a unified manner 

for both discontinuous SMC (VSS) and continuous SMC control functions under parametric uncertainty and 

external disturbance. The control function is partitioned into 3 components: equivalent control, reaching 

control, and perturbation control. 
 

 For the robust discontinuous SMC, the design proposed in Chapter 3 is extended to deal with uncertain 

systems. This approach can be directly applied for uncertain MIMO nonlinear systems and it may be the 

simplest in the current literature (Fu 1992, Chapter 7). 
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 In the proposed linear SMC design, the control function is not only continuous but also linear. The 

continuous nature of this control function helps to eliminate the chattering problem in the standard VSS 

design. The advantage of the control function being linear is that some fundamental concepts of SMC design 

can be explained from the linear control theory framework. For example, the sliding margin in the literature 

can be shown to function as the reaching eigenvalue, the system closed-loop eigenvalues are composed of 

the sliding margin (reaching eigenvalue) and hyperplane eigenvalues. 
 

 A SMC is based on a state-space model, an I-action may be required to eliminate steady-state errors. We 

will prove that the integral VSS control (discontinuous SMC) in Theorem 3.4 can be still applied to both 

robust discontinuous and linear continuous SMC controls in this chapter. 
 

 Since the principal operating mode of a VSS control is the sliding mode, the VSS control can be seen as a 

discontinuous subset of the SMC. In this chapter, the state-space control can be seen as a deterministic subset 

of the SMC. 
 

 SMC is a state-space control approach, it requires an observer to estimate unavailable states. In Bondarev 

et al. 1985, a linear Luenberger observer has been used as an observer of a VSS controller for deterministic 

linear systems (no uncertainties). In Walcott et al. 1987 and Yaz et al. 1993, a Lyapunov sliding condition 

has been used  to design an observer for a class of systems under matched uncertainty restricted to a certain 

system structure. In Slotine et al. 1987, a sliding patch condition has been used to have a region of direct 

attraction where uncertainty is not fully tackled. In fact, in Walcott et al. 1987, Slotine et al. 1987 and Yaz et 

al. 1993, to cope with uncertainty, a Lyapunov sliding condition has been employed to include a switching 

component into a linear Luenberger observer where a linearized model is used for a nonlinear system. In 

Edwards et al. 1995, an observer has been implemented using output feedback technique. 
 

 In this chapter, we propose a novel robust sliding mode observer design for a wide class of systems under 

both matched and unmatched uncertainty. This design is a development of the proposed robust linear sliding 

mode controller design. 
 

 To complete the work in Drazenovic 1969, we present necessary and sufficient invariance conditions. 

They are  valid for both discontinuous and continuous SMC. 
 
 

3.5. Chapter 5: A New Robust Discrete-Time Sliding-Mode Controller-Observer 

Design 

 In this chapter, a new robust discrete-time sliding mode controller (SMC) and observer design is fully 

presented for both discontinuous SMC (VSS) and continuous SMC control functions, it can be seen as a 

discrete-time extension of the previous chapter. A high sampling rate is proved to be a necessary condition 

for a discrete-time SMC, under no uncertainty, this condition reduces to the stability criterion of unit circle in 

the Z-domain. 
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 Based on the work in Pieper et al 1992 for matched uncertain dynamical systems, an alternative design is 

presented without the constraint stated therein. On the basis of the new robust sliding mode controller design 

in the previous chapter, a new robust discrete-time sliding mode controller design is developed to deal with 

uncertain systems. This design thus inherits all features of the previous continuous-time design (reaching, 

sliding, hyperplane and closed-loop eigenvalues; robust SMC and integral SMC, robust sliding-mode 

observer, etc.) 
 
 

3.6. Chapter 6: Robust Sliding-Mode Fuzzy Controller Design 

 Since the invention of the first fuzzy controller by Mamdani in 1974, fuzzy controllers have been found 

successfully in numerous industrial applications such as cement-kiln process control, automatic train 

operation, camcorder autofocusing, crane control, etc. These systems could be classified as slow systems. 
 

 In this chapter, a fuzzy rulebase is identified to take 3 forms: soft, sharp and full rulebases. A 

fuzzification can be normal (linear distribution) or weighted (nonlinear distribution) using triangle or bell 

membership function. A fuzzy inference can be minimum or product method. A defuzzification can be 

mean-of-maxima or centroid method. Based on different fuzzy structure (membership function, fuzzification, 

defuzzification, rulebases, fuzzy inference, etc.), we find the best fuzzy structure (membership function, 

fuzzification, defuzzification, rulebase, fuzzy inference) applicable to both slow and fast systems. 
 

 For the fuzzy control, we have proved that a typical fuzzy rulebase can satisfy the Lyapunov sliding 

condition so the stability of a fuzzy control is guaranteed by the Lyapunov stability theorem. This is a 

stability criterion for the fuzzy control theory. We have presented a proposition for a fuzzy control structure 

applicable to slow and fast systems. 
 

 To design a stable sliding-mode fuzzy controller, a fuzzy mechanism is used to minimize a sliding 

variable s instead of using the sliding condition as in the sliding mode control, so we can obtain the 

invariance property of the sliding mode. In a typical fuzzy rulebase, it may not be convenient to use more 

than 2 entries, we can use 1 entry for s and the other for sum of s, and hence a possible steady-state error 

may be eliminated by this I-action. 
 

 In a fuzzy control, using unity gains for error and its change may cause chattering in fast systems 

(Section 6.4). To adjust these gains means to adapt to system dynamics. Using the sliding-mode control 

theory, these gains can be determined by a hyperplane and the chattering problem can be solved since the 

system dynamics are taken into account (Example 6.1). 
 

 On the basis of the fuzzy identification in Tanaka et al. 1992 and Ishigame et al. 1993, we develop a new 

fuzzy identification scheme which is simpler and more practical. The fuzzy inference will be used to obtain 

the most potential model from some rough mathematical models from experiments using a proposed 

practical system identification. Due to the robustness, a rough system model is required rather than an 

elaborate mathematical model as in a conventional control, a practical system identification is presented for 

this purpose. A fuzzy model by the proposed scheme can be a solution to the conservative problem. 
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3.7. Chapter 7: General Sliding-Mode Controller Design for MIMO Uncertain 

Nonlinear Systems 

 In this chapter, we present a SMC design for SISO nonlinear systems, and also a design for MIMO 

systems. So far we have only considered the case where the output is the first system state. In this chapter we 

will consider the case where the output is a nonlinear function of all system states. 
 

 For a MIMO SMC, the hierarchical control technique has been used in Utkin 1977 for linear systems. 

Alternatively, we will use a decoupling technique which is applicable for MIMO nonlinear systems. This 

technique allows a MIMO can be considered as a collection of SISO subsystems. As consequence, all SISO 

results developed so far can be applicable, including the SISO nonlinear SMC in this chapter. 
 

 For the general case of multivariable nonlinear SMC, in the SMC literature (Fernandez  et al. 1987; Chen  

et al. 1992), the hyperplane design has been based on the  Input-Output Linearization technique (Hunt  et al. 

1983, Isidori 1985, Kravaris  et al. 1986) to transform a nonlinear system into a canonical nonlinear system. 

By the nature of a hyperplane that it is of reduced-order, we will design the hyperplane via the direct 

allocation approach in Chapter 2. The controller will be designed in a unified manner as in other cases. The 

proposed robust design may be the simplest approach in the literature (Fu 1992, Sira-Ramirez 1996). In 

addition, the design scheme in Proposition 3.3 is proved to be efficient in solving the chattering and steady-

state error (Example 7.6). 
 
 

3.8. Chapter 8: Advanced Sliding-Mode Controller Design: Experimental Results 

     In this chapter, results from experiments of Ball-Hoop system are presented to validate our anticipations 

in theory such as infinite gain of the switching function may cause excitation of unmodelled high-frequency; 

slow-down system responses due to low gain of saturate function; performances of continuous SMC, 

continuous pseudo-SMC (TanH SMC) and sliding-mode fuzzy control. 
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Chapter  3 

 

A New Variable-Structure  System  Controller  Designs 
 

3.1. INTRODUCTION 

 In this chapter, a VSS controller design will be fully developed in a unified manner that is extendable 

into robust control (Chapter 4) and MIMO nonlinear system (Chapter 7) where a VSS control is a 

discontinuous sliding mode control (SMC). Based on the concept of sliding-eigenvalues introduced in 

Chapter 2, we propose a stability criterion which is much simpler than the current approach. By the sliding 

condition Eq.(1.4), a control function is first computed in a standard form as in Utkin 1977. We then propose 

a technique to convert this form into a compact form to facilitate controller implementations. The sliding 

condition is a necessary condition to guarantee the sliding mode. We propose a sufficient condition as a 

SMC design rule that the reaching mode must terminate in a finite time so that the sliding mode can exist, 

because the invariance property is with the sliding mode only. A new reaching control design is proposed to 

include system dynamics for efficient SMC designs, this is not the case in the current literature. 
 

 Alternative to the chattering problem analysis in Slotine  et al 1983, we propose an analysis that allows a 

unified approach for both the saturate (Slotine et al. 1983) and unitvector functions (Ryan  et al. 1984, 

Spurgeon 1991). In addition, the hyperbolic tangent function is proposed to cope with limitations of saturate 

and unitvector functions. Using these sliding functions above (saturate, unitvector and hyperbolic tangent 

functions) may cause a steady-state error, a design scheme is proposed to solve this problem (Example 7.6). 
 

 As a VSS control is based on a state-space model, an I-action may be required to eliminate a steady-state 

error. In Chern et al. 1991, an integral of error has been used, however it is a pseudo-SMC because the larger 

controller gain the closer the sliding mode. In Chang 1991, an integral sliding condition has been proposed 

using the same system order, however this approach has some limitation with steady-state error. 

Alternatively, we propose an integral VSS control by augmenting the order of a system model then the 

controller is designed in a unified manner as in the normal case without integral. It can solve the problem of 

pseudo-SMC in Chern et al. 1991 and cope with limitation in Chang 1991 (Example 3.11). 
 
 

3.2. SMC STABILITY CRITERION 

 To our best knowledge, in the VSS literature, there has been a little attention paid to the stability 

problem, only 2 works in Itkis 1976 and Utkin 1977 where a stable sliding mode implies a stable closed-loop 

system. These two works are exactly the same approach to deal with this problem, they are based on a 

numerous complicated theorems and hence it is not convenient to apply for a practical stability test. Also in 

those 2 works above, for a controller design, it is based on (n1) system states for a  n-ordered system so 

there is always one constraint while the hyperplane still does include all the  n-states, so there is no point to 

be constrained. 
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 Alternatively, we analyze this stability problem based on the mechanism of the SMC, then we propose a  

much simpler stability criterion for practical test for SMC. 
 

Theorem 3.1: SMC Stability Criterion 

 Consider a SISO linear system 

  . .x A x B  u   

where 

 x B A, , ,   n n n u1     

if a control function u is designed to satisfy the sliding condition 

 s s.   0 (3.1) 

and if there exists a stable sliding mode 
       

  S
n    


 eig  A B HB HA1 1 10  (3.2) 

then the system is stable  

Proof: 

 We have 

 s s d
dt

s s.      0 0 02    

since s2  must monotonically reduces to zero as s2 0  

 The sliding mode is characterized by the sliding-eigenvalues determined by Eq.(2.9), if these 
eigenvalues are Hurwitz, then ~x1  converges to  zero by Eq.(2.14), as does ~x 2  by Eq.(2.7). By the similarity 

transformation in Eq.(2.2), x x x 1 2
T  converges to  zero: the system is stable. 

 Q.E.D. 
 

Remark 3.1: Stability Test 

 All that a SMC has to do is to satisfy the sliding condition s s.   0. How negative this value may take is 

based on the SMC design rule in Proposition 3.1 in Section 3.4. 

 This stability test is particularly useful and frequently employed in robust SMC in the next chapter. 
 
 

3.3. A NEW VSS CONTROLLER DESIGN 

 In the VSS literature, a control function is either in the standard if-form (Slotine   et al. 1983, White  et 

al 1984,  Sivaramakrishnan  et al 1984, Panicker  et al 1985, Baley   et al. 1987, DeCarlo   et al. 1988, Hikita 

1988, Hong  et al 1989) or in the compact form (Young 1978, Ryan 1983, Ambrosino   et al. 1984, 

Fernandez   et al. 1987, DeCarlo   et al. 1988, Lee  et al 1991). The derivation of the compact form has been 

either too complicated to be applied (Ryan 1983) or not clear how to derive (Young 1978, Ambrosino   et al. 

1984, Lee  et al 1991). In Fernandez   et al. 1987, the derivation has been based on the input/output 

linearization technique for nonlinear systems without perturbation. In DeCarlo et al. 1988, the derivation is 

valid only for linear system without perturbation. 



3. VSS Controller Design 3.3 

 The standard if-form in Utkin 1977 is a convenient form to write a control function that satisfies the 

sliding condition. We first propose the following lemma to simplify this standard  if-form of a VSS control 

function. 

Lemma 3.1: Compact Control Function 

 For a switching control function of the following standard  if-form 

 u x
x

xi i
i

n

i
i i

i i

 








 
1

0

0
,

, .

, .

 

 

     if   

     if   
 (3.3) 

where   can be any scalar function, then the  if-form control function above becomes the compact form as 

follows 

 u x xi i
i

i i
i

i

n











   


    


2 21

.sgn  . (3.1) 

Proof 

 Let 

 i i
i i

i i
i i i

x
x

x 
 

 


  
 

 
  0

1

1
0 1

0
0

,
,

.
     if   
     if   

sgn   

then 

 
  

  


 


 

i0

i0

 

 





















 

 

i i

i i

i
i i

i
i i

1

1

0

1

2

2

  

thus 

 u x x x x x x xi i i i
i

n

i i i i i
i

n

i i i i
i

n

     
  
          0 1

1
0 1

1
0 1

1
. . . . .sgn sgn sgn      .  

 Q.E.D. 
 

Remark 3.2: Simplification of Control Function By Hyperplane Normalization 

 It is usual that   sHB , and   s  if the hyperplane is normalized (Section 2.5). 
 

 For a switching VSS controller design, we propose the following theorem 

Theorem 3.2: Switching VSS Controller Design 

 For a linear system 

  . .x A x B  u   

with a hyperplane 

 s  Hx   

then a VSS control function can be combined as 
 u u ue r   (3.4) 

where 

  equivalent control 
 ue e e   K x K HB HA,   1  (3.4.a) 
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  reaching control 
 u sr r r n  HB K x K   1

1. . ,sgn    (3.4.b) 

with 
 x B A, , , , ,    


n n n

iu s1                   : sliding margin.  

 Proof 

 We will check the sliding condition, from Eq.(1.8) we have 
  .s u ueq HB     

where 

u xeq i i
i

n

  


HB HAx  1

1
 , where i : determined by the system parameters 

and 

u xi i
i

n





1
,  where ki : to be determined 

thus 

 ss s u u s xeq i i i
i

n
    


HB HB    

1
  

 To satisfy the sliding condition, we obtain 

 ss
s x

s x

s x

s x
i

i i

i i
i

i i i

i i i

i , 
 

 





 
 







0
0

0

0

0
0






 

 


,    if   

,    if   

,    if   

+ ,    if   

HB

HB

HB

HB

 
 

 
 

  

by Lemma 3.1, we have 
    i i i i i ix x x s  . .sgn HB   

then 

           u x x s x s x si i i i
i

n

i i
i

n

i i
i

n

    






   




























     . .sgn .sgnsgn   HB HB HAx HB HB HAx

1

1

1

1

1

  

where   i i . HB 0 : for the sake of simplicity. Q.E.D. 

 
 To design a VSS controller using Theorem 3.1, the reaching control constant vector K r , needs to be 

determined. For an n-order system, there are n design parameters  i 's to be determined. The following 

corollaries will propose designs using only 1 design parameter . 
 

Corollary 3.1: Conventional Reaching Controller Design 

 The reaching control in Theorem 3.1 can be determined with 
 K r     (3.4.c) 

where   0 is a sliding margin. 

Proof 

 As in the literature, we can choose  i   since the necessary and sufficient condition  i  0  in 

Theorem 3.1. 

 Q.E.D. 

 



3. VSS Controller Design 3.5 

 In the previous approach, the system dynamics are not included in the reaching mode whose dynamics 

totally depend on the system dynamics as the same sliding margin is used for all system states in all systems 

(slow and fast systems). The following corollary proposes a more efficient design where the system 

dynamics are included in the reaching control (Example 3.5) 

Corollary 3.2: New Reaching Controller Design 

 The reaching control in Theorem 3.1 can be determined with 
 K Hr  .  (3.4.d) 

where   0 is a sliding margin. 

Proof 

 All elements of H are associated with all system states, and H is designed based on the system matrices 
A and B. To included the system dynamics, choosing  i ih .  satisfies the necessary and sufficient 

condition of  i  0  mentioned in Theorem 3.1 since hi 's are coefficient of the system differential equation. 

 Q.E.D. 
 

Remark 3.3: Sliding Mode as Fast Mode for Invariance 

 The sliding margin  determines the reaching mode, it may be high for the required  faster reaching mode 

as opposed to the sliding mode. So in the literature, the reaching mode is also called the  fast mode, and the 

sliding mode called the  slow mode. By the nature of VSS design that the invariance property is in the sliding 

mode, therefore the longer is the sliding time (Section 3.4), the more robust is the controller. 
 
 

3.4. PROPOSITION 3.1: SMC DESIGN RULE 

 From Remark 3.3,  for a proper reconciliation between the reaching mode and the  sliding mode, we 

propose the following design rule applicable to all systems (linear or  nonlinear, SISO or  MIMO) and all 

approaches (continuous or  discontinuous SMC or  continuous pseudo-SMC, continuous-time or  discrete-

time SMC, conventional or integral SMC, and sliding-mode fuzzy control) 

s

y

s
y

tR tS
tT

t tT R
t tS R  

Fig. 3.1: SMC Design Rule 

where 

 s: sliding variable from Eq.(1.2) 

 y: system output 
 t t tT R S  , tT : total time, tR : reaching time s s.   0 , tS : sliding time s  0   

In the figure above,  there is a sliding mode in the first case, but practically not in the second. 
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Response Time = Reaching Time(higher lower tR) + Sliding Time(higher p1lower tS). 
 If  t t tS S R 0 :  , then increasing p1 does not make the response faster but does increase the control 

effort only!  
 Otherwise, if  t t tR R S 0 : , then increasing  does not make the response faster but does  increase 

the control effort only!  

 

So we propose the following design rule that will be effective in both simulation and experiment. 

 SMC Design Rule: Ensure tStR, but  not  t t tS S R 0 :   and  not t t tR R S 0 : . 
 
 

3.5. SOLUTION TO CHATTERING PROBLEM 

 In the VSS literature, there are 2 approaches to eliminate the chattering by using the saturate function 

(Slotine  et al 1983) and the unitvector function (Ambrosino   et al. 1984, Spurgeon 1991). The analysis of 

the chattering in Slotine   et al. 1983 raises 2 questions. Firstly why this chattering still exists even in a 

simulation where the switching controller is practically free from the imperfection. Secondly, based on this 

analysis, it is not clear how to choose the width of the boundary layer. The elimination of chattering is 

implied by using the unitvector function in Ambrosino   et al. 1984, Spurgeon 1991 because this function is 

continuous. The derivation of this function is either unavailable (Ambrosino et al. 1984) or too 

mathematically complicated to be applied ( Ryan   et al. 1984, Spurgeon 1991), and it is not clear how to 

choose  which is the width of the boundary layer in the sense in Slotine et al. 1983.  
 

 Because of the  infinite gain of a relay represented by the  sign function of a typical VSS control function 

as in Eq.(3.5), normally there is a problem of  chattering. Our approach raises no questions as mentioned 

above in Slotine  et al. 1983, Ambrosino  et al. 1984, Spurgeon 1991. To eliminate this problem, we may use 

either a saturation method (this section) or continuous VSS (Chapter 4). 
 

 We analyze this problem from another viewpoint: an analysis that allows a unified design for both 

saturate and unitvector functions. In addition, we propose  the hyperbolic tangent function since it is a 

standard mathematical function and it may outperform the saturate and unitvector functions. 

s

Saturating: sat(s, ks) UnitVector:            smt(s, ks)
Hyperbolic Tangent: tanh(ks*s)

s



Switching: sgn(s)

ks  

ks  

s



ks
a aa

a a a

0 0 0

 
Fig. 3.2: SMC Sliding Functions 
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3.5.1. Switching Function 

 A switching function is defined as 

 sgn
     if  
     if  
     if  

s
a s

s
a s

  
 


 





,
,
,

0
0 0

0
 (3.5) 

 

3.5.2. Saturate Function 

 The sliding gain ks is reduced from ks as it is in a switching function, so a saturate function can be 

defined as 

 sat
       if   

sgn    if  
s k

k s s
k

s s
k

s

s
s

s

,
. ,

,
 

 













1

1
 (3.6) 

 

3.5.3. Unitvector Function 

 Alternatively, a  switching function in Eq.(3.5) can be defined as: 

 sgn( )s s
s

   

 Hence, to avoid an infinite gain as above, a unitvector  can defined as follows 

 smt s k s

k
s

s

s

,  
1     smt for smooth since its appearance (3.7) 

since 

 s
s

s
r s




  

where 

 
s r s

r s
s
s

sgn s

s r s
r s r

s




 













 :  

 :  
   

( )

1
  

with 

 k s
s

s

s
s :  the gain reduced from  because    




, 1   

 

3.5.4. Hyperbolic Tangent Function (TanH) 

 To avoid an infinite gain, a hyperbolic tangent function can be used instead 
 tanh k ss  (3.8) 

and 

 
d k s

ds
ks

s

s

tanh 



0
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Remark 3.4: Pseudo-SMC with Boundary Layer 

 To satisfy the sliding condition, a VSS control function takes the form of a switching function that is 
defined by Eq.(3.5), so there are only 3 valid values:  a a, ,0 . 

 For a sliding function, outside the band of   are the valid values  a a, , so the sliding condition is 

satisfied. Except the origin, inside the band of   are invalid values, so the  sliding condition is violated in 

this band. There is no sliding mode in this band, therefore a VSS control using a sliding function is called a   

pseudo-SMC. 

 

3.5.5. Performance of Sliding Functions (Saturate, Unitvector and TanH Functions) 

(1) The switching function has infinite gain while the sliding functions have finite gains. The less gain is, the 

less chattering is. However, the more possible steady-state error and a slow-down response may results. 
 

(2) As it will be shown in the experimental result at the final chapter, the real danger of the chattering 

problem is that it excites high-frequency unmodelled plant dynamics. So there is always an  upper bound for 

the sliding margin, this bound is the lowest for a switching function and the highest for a unitvector function. 

So, by Proposition 3.1 in Section 3.4 above, for a switching function,  it is possible that the upper bound is 

low enough to slow down the system response even with the fast eigenvalue. 
 
(3) For a saturate function, the gain is constant (ks  of the saturate function in the figure above) within the 

boundary layer. For unitvector and hyperbolic functions, the gain decreases when the value of the unitvector 
function increases (k ks s

*   of the unitvector function in the figure above), thus the  less possible for an 

oscillation (chattering) to occur 

 This is  a disadvantage of the unitvector and hyperbolic tangent over the saturate function, because the 

more possible for a steady-state error to occur. 

 On the other hand, this is an  advantage of the unitvector and hyperbolic tangent over the saturate 

function. The upper bound of the saturate function is lower than that of a unitvector function. For the 

saturate function, this bound may be low enough to slow down the system response even with the faster 

eigenvalue. 
 

 Since the gains of all sliding functions above are lower than that of the sign function (infinite gain), a 

steady-state error may occur. In addition, the chattering is excited by a large error. The following proposition 

is used to solve this problem 
 

Proposition 3.2: Application of Sliding Function 

 To eliminate the chattering problem, the design procedure is exactly the same, we simply to replace a 

switching function by a  saturate, a unitvector or a TanH function. The gain may be chosen just low enough 

to eliminate the chattering. The lower is the gain, the wider is the boundary layer in which a pseudo-VSS 

control exists (Remark 3.4). 
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 The following proposition eliminates the steady-state error arised in using the sliding function to 

eliminate the chattering (Example 7.6). 

Proposition 3.3: Solution to Problem of Chattering and Steady-State Error 

 if error > err_tol 
    u is based on the saturate, unitvector or hyperbolic function 
 else 
    u is based on the sign function 
where  err_tol is chosen small enough to eliminate the chattering and error. 
 
 

3.6. INTEGRAL VSS CONTROLLER DESIGN 

 A VSS control is based on a state-space model, an I-action may be required to eliminate a steady-state 

error. In Chern et al. 1991, an integral of error has been used, however it is a pseudo-SMC because the larger 

controller gain the closer the sliding mode. In Chang 1991, an integral sliding condition has been proposed 

using the same system order, however this approach can be applied to some systems but not all (Example 

3.11). Alternatively, we propose an integral VSS control by augmenting the order of a system model then the 

controller is designed in a unified manner as in the case without integral. It can solve the problem of pseudo-

SMC in Chern et al. 1991 and cope with limitation in Chang 1991. 
 

 Based on the integral sliding condition in Chang 1991, we have the following theorem to design an 

integral SMC. 
 

Theorem 3.3: Integral VSS Controller Design by Integral Sliding Condition 

 Consider the following system 

 x Ax B  u  (3.9) 

and a hyperplane 

 s  Hx   
if ~u  is a SMC of the system in Eq.(3.9), then there exists a constant  i  to determine an integral SMC as 

  u u s dti

t

i   ~ . ,HB 1

0

0   (3.10) 

where   i  is a positive constant as an integral sliding margin and can be determined by the SMC design rule 

in Proposition 3.1. 

Proof 

 A Lyapunov function can be defined as 

 V s s dti

t

 








1

2
2 1

2
0

2

  (3.11) 

so 

  V s s s dti

t

 










0
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then from Eq.(3.9), we have 

  .V s u s dti

t

  








HAx HB 

0

  

by Eq.(3.10), we have 
   . ~V s u HAx HB   

thus 

 V  0 (3.12) 

since ~u  is a SMC of Eq.(3.9). 

 Q.E.D. 
 

Remark 3.5: Applicability of SMC Design Rule to Integral VSS 

 In Theorem 3.3, the control ~u  is designed normally as a SMC and an integral of sliding variable s is 
included with an integral sliding margin  i  determined by the SMC design rule in Proposition 3.1. 
 

 Alternatively, we have the following theorem to design an integral SMC where the system model is 

augmented and an integral of error is used instead of sliding variable to improve an I-action. The advantage 

of the design in Theorem 3.3 is simple since the system model is not used in the I-action, however the 

following design can cope with its limitation (Example 3.10 and 3.11) because all system states are 

integrated in Theorem 3.3 via the sliding variable but only the error of output in the following theorem. 

Theorem 3.4: Integral VSS Controller Design by Augmented System 

 Consider a system 

 
x Ax B

Cx
 






u
y

 (3.13) 

and its augmented-order system with a reference input of r 
 x A x Bi i i i iu   (3.14) 

where 

  x
x

A
C

0 A
B

Bi

t

i
n

i
y r dt 


























 











0

1

0 0
, ,  (3.14.a) 

then an integral VSS control with a hyperplane H i  can be determined by 
 u u ui  ~  (3.15) 

where 
     ~ ,

~
, , ,u h r h hi i i i i i n 


H B H1

1 1 1  (3.15.a) 

and  
 ui is a VSS control for Eq.(3.14) and can be determined by Theorem 3.2 or 3.3.  

with 
 x B A C, , , , , ~, , ,     n n n n

iu u u y r1 1               :  sliding margin.  
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Proof 

 Let 

  x y r dt x y r
t

0
0

0        

from Eq.(3.13), we have 

 



x

x Ax B
Cx
Ax B 0

C
0 A x B 0i

n n n

x y r
u u

r x
u r









 












 









 









 









 


















 








 











  

0

1 1

0

1

0 0 0 1
  

or, by Eq.(3.14a) 

 x A x B
0i i i i

n
u r  













1

1
 (3.16) 

thus 

   . . ,s u r u h ri i i i i i i i i
n

i i i i i i   








   



H x H A x H B H
0

H A x H B
1

1
1  (3.17) 

by Eq.(3.15), we have 
   ~s u u ui i i i i i i i i i i i    H A x H B H A x H B  (3.18) 

since ui  is a VSS control for Eq.(3.14), the sliding condition s si i  0  is satisfied using Eq.(3.18) 

 Q.E.D. 
 
 

3.7. NUMERICAL EXAMPLES 

 For the purpose of comparison only, our design keeps the control effort in the same order as in the 

original design, although in some examples it is rather high. Based on the SMC design rule in Proposition 3.1 

(Section 3.4), our proposed control functions are designed in a unique approach, while the original control 

functions have been designed in different approaches: equal excursion sliding-mode, non-linear hyperplane. 
 

 Hyperplane designs are omitted, they can be found in the previous chapter of the hyperplane design. In 

fact, we have built a VSS toolbox in MATLAB language and all the following hyperplanes are determined 

by the corresponding function in that toolbox. It is necessary to emphasize that H is normalized such that 

HB=I. By this choice, we not only simplify the design calculation, but also get the unique equation for a 

hyperplane  rather than a different equation by a scaling factor. 
 

 All the hyperplane design methods in the previous chapter are used: the eigenvalues allocation method, 

the optimal sliding mode method, and the direct calculation method. Since the original control function is in 

a switching form, the corresponding proposed control functions are also in the switching form for the 

purpose of comparison. To see that the hyperplane design is independent of the controller design, there are 

different VSS control functions for each hyperplane design method. 
 

 For the saturate VSS or unitvector VSS design, it is exactly the same as the switching counterpart with 

the extra introduction of  Ks. It may be chosen just low enough to eliminate the chattering. 
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 The first 4 examples are designed in all methods for an assessment, each starts with the original design 

from the VSS literature, next follows with new designs for switching VSS then saturate, unitvector and 

TanH VSS to solve the chattering problem. Each concludes with I/O-State and optimal VSS designs in 

switching control functions to compare with the original design which is also in switching control function, 

other designs (saturate, unitvector and TanH VSS) are not presented to avoid a lengthy presentation. 

 

 The next 3 examples are used to illustrate some issues such as the efficiency of the new design, the 

validity of the application of the I/O-state method (Section 2.3.4), the validity of the SMC design rule 

(Section 3.4) and the problem of a steady-state error when reducing the gain in the saturation approach 

(Section 3.5). The following example is used to show the efficiency of the proposed integral VSS control. As 

mentioned in the previous chapter on the hyperplane design, the assessment of all the hyperplane design 

methods must be made in this chapter where the VSS control function is available. So in this chapter, there 

are comparisons not only for the hyperplane design methods (eigenvalue allocation method, I/O-state 

method, optimal method), but also for the controller design methods (switching, saturate, unitvector and 

TanH functions). 

 

Remark 3.6: Summary of VSS Designs 

 In the numerical examples below, and in this work generally, hyperplane eigenvalues will be chosen at 

the same unique value for simplicity except in case of the optimal sliding mode approach. Different multiple 

values may be attempted to compromise between the response speed and overshoot. 

 Hyperplane designs are referred to the previous chapter; 

 Sliding margin  is chosen on the basis of Proposition 3.1; 

 New Switching VSS control functions are computed by Theorem 3.2 and Corollary 3.2 where the 

switching function is given by Eq.(3.5); 

 Saturate, Unitvector and TanH VSS control functions are given by Eqs.(3.6) to (3.8), respectively, based 

on Proposition 3.2; 

 Integral VSS control functions can be determined by Theorem 3.3 (Integral VSS) or Theorem 3.4 

(Augmented System) 
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3.7.1. Example 3.1: Canonical System 

 

3.7.1.1. Original Design 

 Consider a system in White  et al. 1984 

 x x
  


































0 1 0
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u   

with the hyperplane 
 s  Hx H, , ,          38 9 1   

and the original control function is given as 
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Fig. 3.3: Original VSS Control for Example 3.1. 

 

3.7.1.2. New Designs 

 Choose   H   7 7, , we have 

  H  49 14 1, ,   

thus  K e  6 38 8, ,   

 Choose   2 5. , hence Theorem 3.2 and Corollary 3.2 yield 
  Kr  98 28 2   
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(a) Switching VSS 
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Fig. 3.4: Switching VSS Control for Example 3.1. 

 

(b) Saturate VSS 

 Choose ks  0 75. , then 
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Fig. 3.5: Saturate VSS Control for Example 3.1. 
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(c) Unitvector VSS 

 Choose ks  1 75. ,  then 
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Fig. 3.6: Unitvector VSS Control for Example 3.1. 

 

(d) TanH VSS 

 Choose ks  1 25. ,  then 
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Fig. 3.7: TanH VSS Control for Example 3.1. 
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(e) Switching VSS by I/O-state of Relative Degree r 

 We have 

 n r 3 3,            

so the resulting hyperplane by the I/O state method is similar to the above hyperplane due to the canonical 

system 
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Fig. 3.8: I/O State Switching VSS Control for Example 3.1. 

 

(f) Error-Optimal Sliding Mode 
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Fig. 3.9: Error Optimal VSS Control for Example 3.1. 
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 Choose Q 
















10 0 0
0 0 1 0
0 0 0 1

.
.

, then 

  H  10 4 5826 1, . ,   

thus  K e    6 1 1 4174, , .   

choose   3 , hence Theorem 3.2 and Corollary 3.2 yield 
  Kr  30 0 13 7477 3 0. . .   

3.7.1.3. Discussion 

 I/O-State method: the same since the system is canonical. 

 Error-optimization: comparable to the normal approach since the control effort reduces by half but  the 

response time increases by twice. 

 

3.7.2. Example 3.2: Non-canonical System 

 

3.7.2.1. Original Design 

 Consider a system in Sivaramakrishnan  et al. 1984 
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Fig. 3.10: Original VSS Control for Example 3.2. 
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3.7.2.2. New Designs 

 Choose   H    6 6 6, , , then 

  H  0 4285 0 3508 0 0800 1 4401. , . , . , .   

thus  K e  0 4260 1 4014 0 1694 1. , . , . ,   

choose   10 , hence Theorem 3.2 and Corollary 3.2 yield 
  Kr  4 2845 3 5084 0 80 14 4014. . . .   
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Fig. 3.11: Switching VSS Control for Example 3.2. 

(b) Saturate VSS 

 Choose ks  12 , then 
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Fig. 3.12: Saturate VSS Control for Example 3.2. 
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(c) Unitvector VSS 

 Choose ks  18 , then 
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Fig. 3.13: Unitvector VSS Control for Example 3.2. 

 

(d) TanH VSS 

 Choose ks  20 , then 
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Fig. 3.14: TanH VSS Control for Example 3.2. 

 

(e) Switching VSS by I/O-state of Relative Degree r 

 We have 
n r S     4 3 6 6 0, , ,                : stable, so we continue to design a controller 
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Choose   H IO, ,  6 6 , then 

  H  0 1416 0 2068 0 08 0. , . , .   

thus  K e    0 4237 0 1604 0 3106 1. , . , . ,   

choose   2 , hence Theorem 3.2 and Corollary 3.2 yield 
  Kr  0 2832 0 4137 0 1600 0. . .   
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Fig. 3.15: I/O-State VSS Control for Example 3.2. 

 

(f) Error-Optimal Sliding Mode 
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Fig. 3.16: Error-Optimal VSS Control for Example 3.2. 
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 Choose Q 



















10 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

.
.

.

, then 

  H  0 8008 0 4134 0 08 0 08. , . , . , .   

thus  K e   0 4087 3 4270 0 3779 1. , . , . ,   

choose   5 , hence Theorem 3.2 and Corollary 3.2 yield 
  Kr  4 0041 2 0671 0 4000 0 4000. . . .   

 

3.7.2.3. Performance compared with the Normal Case 

 I/O-State method: same speed, no overshoot, much higher efficiency. 

 Error-optimization: faster and smaller overshoot. 

 

3.7.3. Example 3.3: Equal Excursion Sliding Mode 
 

3.7.3.1. Original Design 

 Consider a system in Hong  et al. 1989 
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Fig. 3.17: Original VSS Control for Example 3.3. 
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3.7.3.2. New Designs 

 Choose   H  1 , then 

  H   0 3333 0 3333. , .   

thus  K e  0 3333 0 3333. , .   

choose   1 5. , hence Theorem 3.2 and Corollary 3.2 yield 
   Kr  0 5 0 5. , .   
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Fig. 3.18: Switching VSS Control for Example 3.3. 

(b) Saturate VSS 

 Choose ks  150 , then 
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Fig. 3.19: Saturate VSS Control for Example 3.3. 
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(c) Unitvector VSS 

 Choose ks  250 , then 
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Fig. 3.20: Unitvector VSS Control for Example 3.3. 

 

(d) TanH VSS 

 Choose ks  200 , then 
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Fig. 3.21: TanH VSS Control for Example 3.3. 
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(e) Switching VSS by I/O-state of Relative Degree r 
We have n r 2 2,           

similar to the conventional case due to the canonical system. 
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Fig. 3.22: I/O-State VSS Control for Example 3.3. 

 

(f) Error-Optimal Sliding Mode 
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Fig. 3.23: Error-Optimal VSS Control for Example 3.3. 
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 Choose Q 










0 2 0
0 0 1
.

.
, we have then 

  H   0 4714 0 3333. , .   

thus  K e  0 333 0 1953. , .   

choose   1 25. , hence Theorem 3.2 and Corollary 3.2 yield 
  Kr  0 5893 0 4167. .   

 

3.7.3.3. Discussion 

 I/O-State method: the same since the canonical system 

 Error-optimization: comparable to the normal approach. 
 

Remark 3.7: Comparison between Proposed Design and Equal Excursion Sliding-Mode Design 

 In the original design, the author has proposed the technique of an equal excursion sliding mode and 

illustrated by the example. We still use our normal  design  approach  and  still  get  the  same result of equal 

excursion! 

 

3.7.4. Example 3.4: Non-linear Hyperplane 

 

3.7.4.1. Original Design 

 Consider a system in Lee   et al. 1991 
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Fig. 3.24: Original VSS Control for Example 3.4. 
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with the  non-linear hyperplane 
 s x x x x x x x x x      9 6 0 33 1 79 0 42 0 481 2 3 1

3
1
2

2 1 2
2

2
3. . . .   

and the original control function 
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sgn( )

. , , , . , . , . , . , . , .          

  

 

3.7.4.2. New Designs 

 Choose   H   3 3, , then 

  H  0 9 0 6 0 1. , . , .   

thus   K e  0 0 8 0 6, . , .   

choose   1 5. , hence Theorem 3.2 and Corollary 3.2 yield 
   Kr  13500 0 9000 0 1500. . .   
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Fig. 3.25: Switching VSS Control for Example 3.4. 
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(b) Saturate VSS 

 Choose ks  50 , then 
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Fig. 3.26: Saturate VSS Control for Example 3.4. 

 

(c) Unitvector VSS 

 Choose ks  100 , then 
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Fig. 3.27: Unitvector VSS Control for Example 3.4. 

 



Sliding-Mode Control: Advanced Design Techniques 3.28 

(d) TanH VSS 

 Choose ks  75 , then 
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Fig. 3.28: TanH VSS Control for Example 3.4. 

 

(e) Switching VSS by I/O-state of Relative Degree r 

 We have 

 n r 3 3,           

similar to the conventional case due to the canonical system. 
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Fig. 3.29: I/O-State VSS Control for Example 3.4.  
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(f) Error-Optimal Sliding Mode 

 Choose Q 
















10 0 0
0 0 1 0
0 0 0 1

.
.

, then 

  H  1 0 4583 0 1, . , .   

thus  K e  0 0 9 0 4583, . , .   

choose   1 5. , hence Theorem 3.2 and Corollary 3.2 yield 
  Kr  1 5000 0 6874 0 1500. . .   
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Fig. 3.30: Error-Optimal VSS Control for Example 3.4. 

 

3.7.4.3. Performance compared with the Normal case 

 I/O-State method: the same since the canonical system. 

 Error-optimization: the normal approach is even better because it has no overshoot! 

 

Remark 3.8: Comparison between Proposed Design and Nonlinear Hyperplane Design 

 In the original design, the author has proposed that the nonlinear hyperplane make the system responses 

faster. We still use our normal design and still get the same result, perhaps ours might be better because it is 

as fast as the original but with lower control effort! 

 

3.7.5. Example 3.5: Efficiency of New Design 

 Consider the following DC servo system 

 G s
s s

   


600

20
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so its state-space model is 

  . .x x










 











0 1
0 20

0
600

u   

Choose H  60  then 
  H  0 1 0 0017. .   

thus  K e  0 0 0667.   

for all designs below. 

 

3.7.5.1. Conventional Design 

 By the SMC design rule, choose    0 4. , hence Theorem 3.2 and Corollary 3.1 yield 
  K r  0 4 0 4. .   

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Time [s]

O
u

tp
u

t

0 0.1 0.2 0.3 0.4
-30

-20

-10

0

10

20

Time [s]

C
o

n
tr

o
l

0 0.1 0.2 0.3 0.4
-0.1

-0.05

0

0.05

Time [s]

S
lid

in
g

0 0.5 1
0

20

40

60

Output

C
h

a
n

g
e

 o
f O

u
tp

u
t

Conventional VSS Control for 2-nd Order System

 
Fig. 3.31: Conventional VSS Control for Example 3.5 with   0 4.  

Choose ks  50 , we have 
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Fig. 3.32: Conventional TanH VSS Control for Example 3.5 
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3.7.5.2. New Design 

 By the SMC design rule, choose    40 , hence Theorem 3.2 and Corollary 3.2 yield 
  K r  4 0000 0 0667. .   
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Fig. 3.33: New VSS Control for Example 3.5 with   40  

 
Choose ks  200 , we have 
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Fig. 3.34: New TanH VSS Control for Example 3.5 
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Remark 3.9: Performance of New Design 

 The new design is less chattering and lower control effort than the conventional approach. In addition, 

the new TanH VSS design has much higher sliding gain so less possibility of steady-state error. The reason 
is the system dynamics are very fast, these dynamics are include in H where H H1 2 60     , the new 

design includes this fact in the reaching control where the conventional design ignores them and uses the 

same sliding margin for all system states. 

 

3.7.6. Example 3.6: Error/Energy-Optimal VSS 

 Consider a system in Sivaramakrishnan   et al. 1984 
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.

,     and     R  1  

then by the error/energy optimal sliding mode method, a  hyperplane can determined as 
 H  0 04 0 0649 0 08 0 0543. , . . , .   

thus  K e    0 3861 0 0259 0 7835 1. , . , . ,   

choose   7 , hence Theorem 3.2 and Corollary 3.2 yield 
  Kr  0 2828 0 4543 0 5600 0 3801. . . .   
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Fig. 3.35: Error/Energy-Optimal VSS Control for Example 3.6. 

 The control effort is very low as expected, however the system response is  slow and there is a large 

overshoot. 
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3.7.7. Example 3.7: Applications of I/O-State Method (Section 2.3.4) 

 As mentioned in the previous chapter on the hyperplane design, the following examples are to illustrate 

the validity of an application of the I/O-State technique to design a hyperplane (Section 2.3.4). When the 

relative degree is less than the system order, the stability test in Section 3.2 must be used in the first place. 

Note that this method is applicable for both linear and nonlinear systems. The following illustrations are for 

linear systems to investigate into the I/O-state method, Chapter 6 will be for nonlinear systems. 

 

3.7.7.1. Relative Degree less than System Order 

 By the stability criterion, we can have the following 2 cases 

 

(a) Instability found by Stability Criterion:  I/O-State Method Inapplicable 

 Consider a system in Spurgeon 1991 
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u u
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0 365 0 319 9 49
0 0 5

0
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10
  

by the normal method, choose H   3 3, ,  by the direct calculation technique, we have 

  H   0 0018 0 0559 0 1. . .   

thus  K e  0 0199 0 0783 0 0404. . .   

choose   2 , hence Theorem 3.2 and Corollary 3.2 yield 
  Kr  0 0037 0 1118 0 2000. . .   
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Fig. 3.36: Switching VSS Control for Example 3.7. 

 
By the I/O-state method with a relative degree r, choose the same  H  above, we have 

  H  0 0501 0 6071 0 1000. . .   

thus  K e  0 2355 1 4596 5 9895. . .   
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so 
 n r S    3 2 3 57 2989, , .                : unstable!  

choose   2 , hence Theorem 3.2 and Corollary 3.2 yield 
  Kr  0 1003 1 2143 0 2000. . .   

0 1 2 3
-4

-2

0

2

4
x 1053

Time [s]

O
u

tp
u

t

0 1 2 3
-8

-6

-4

-2

0
x 1057

Time [s]

C
o

n
tr

o
l

0 1 2 3
-2

-1

0

1

2
x 1054

Time [s]

S
lid

in
g

-4 -2 0 2 4
x 1053

0

0.5

1

1.5

2
x 1056

Output

C
h

a
n

g
e

 o
f O

u
tp

u
t

I/O-State VSS Controller for 3-rd Order System: n=3; r=2; UnStable Sliding mode

 
Fig. 3.37: I/O-State VSS Control for Example 3.7: n=3, r=2; Unstable Sliding Mode 

This method fails in this case. 

 

(b) Stability found by Stability Criterion: I/O-State Method Applicable 

 In Example 3.2, we had n r 4 3,  , the relative degree is less than the system order, so the sliding 

eigenvalues need be checked 
    S   6 6   

since they are stable, the I/O method is applicable. 

 

3.7.7.2. Relative Degree equal to System Order 

 In Examples 3.1, 3.3 and 3.4, we had n r , so the I/O method is always applicable as the system 

stability is guaranteed. 

 

3.7.8. Example 3.8: A Simple Test of SMC Design Rule (Section 3.4) 

 Consider a system in White   et al. 1984 as in Example 3.1. 

 

3.7.8.1. Violation 1 in SMC Design Rule: Sliding Time much smaller than Reaching Time 

  The sliding margin is kept the same,   2 5. , instead of  H   7 7 , the hyperplane eigenvalues are 

increased to violate the design rule 
  H   35 35   
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thus  H  1225 70 1  

and  Ke  6 1214 64  

with   2 5. , hence Theorem 3.2 and Corollary 3.2 yield 
   Kr  3062 5 175 2 5. .   
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Fig. 3.38: Cf. Fig. 3.4, Switching VSS Control violating SMC Design Rule for Example 3.8 

 

DISCUSSION: the eigenvalues are chosen about 5 times faster, the time response is the same (about 1.2 secs), 

but the maximum control effort is much higher (3000 compared to 220). 

 

3.7.8.2. Violation 2 in SMC Design Rule: Reaching Time much smaller than Sliding Time 
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Fig. 3.39: Cf. Fig.3.4, Higher Sliding Margin violating SMC Design Rule for Example 3.7. 
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 The hyperplane eigenvalues are kept the same,  H   7 7 , thus the hyperplane and the equivalent 

control are unchanged 
  H  49 14 1   

thus  Ke  6 38 8   

instead of   2 5. , the sliding margin is increased to violate the design rule, choose   25 , hence Theorem 

3.2 and Corollary 3.2 yield 
  Kr  1225 350 25   

 

DISCUSSION: the time response is a bit faster (1 sec compared to 1.2 secs), however the maximum control 

effort is much higher (3800 compared to 220) 

 

3.7.9. Example 3.9: Steady-State Error when Reducing Sliding Gain 

 Consider a system in Lee   et al. 1991 as in Example 3.3 where the sliding gain ks of saturate, unitvector 

and tanh are reduced to unnecessarily low to see steady-state errors. 

 

3.7.9.1. Saturate VSS 

 Choose ks  1 , instead of ks  50  
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Fig. 3.40: Saturate VSS Control with Very Low Sliding Gain for Example 3.9. 
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3.7.9.2. Unitvector VSS 

 Choose ks  1 , instead of ks  100  
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Fig. 3.41: Unitvector VSS Control with Very Low Sliding Gain for Example 3.9. 

 

3.7.9.3. TanH VSS 

 Choose ks  1 , instead of ks  75  
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Fig. 3.42: TanH VSS Control with Very Low Sliding Gain for Example 3.9. 

 

3.7.9.4. Discussion:  

 There are steady-state errors when the sliding gains are reduced much more than necessary. 
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3.7.10. Example 3.10: Integral VSS Control using Integral of Sliding Variable 

 In Example 3.3, the reference input is equal to 0, if a unit reference input is used then there is a 

noticeable steady-state error. We will use an integral VSS in Theorem 3.3 to eliminate this error. 

 

3.7.10.1. Original Design 

 Consider a system in Hong  et al. 1989 as in Example 3.3 
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Fig. 3.43: Original Design with Unit Reference Input in Example 3.10: Steady-State Error 

 

3.7.10.2. New Design 

 Choose the same hyperplane-eigenvalue as in Example 3.3, based on the SMC design rule, now the 
sliding margin is changed to   1  and to include an integral sliding margin of i  0 15.  in Theorem 3.3 
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Fig. 3.44: Integral VSS Control using Integral Sliding Condition in Example 3.10: No Steady-State Error 

 

Recall that the integral sliding condition in Eq.(3.11) has been used instead of the conventional sliding 

condition s s.   0 . 

 

3.7.10.3. Discussion 

 Steady-state error is eliminated. 

 

3.7.11. Example 3.11: Integral VSS Control using Integral of Output Error 

 Consider the following system from Lin et al. 1992 where perturbation is ignored for the time-being and 

it will be considered in the next chapter 
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3.7.11.1. Original Design 

 Using the linear quadratic optimal control, an original control has been 
 u x x  1 078 4 8191 2. .   
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Fig. 3.45: Original Design in Example 3.11. 

 

For a unit step response, we have 
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Fig. 3.46: Original Design with Unit Step Input in Example 3.11: Steady-State Error. 

 

If the integral sliding condition is used, choose 
 H     50 H 0.0073 0.0233   

then Theorem 3.3 yields 

  u s dt si

t

e    
0

1K x x sgn   

where 
  Ke i   0 12 1 98 50 106. , . , ,    

 Note that i  in Theorem 3.3 is chosen as large as possible to reduce the steady-state error as much as 

possible. 
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Fig. 3.47: Integral VSS Control using Integral Sliding Condition in Example 3.11: Steady-State Error 

 

Note that the integral sliding condition in Eq.(3.11) has been used instead of the conventional sliding 

condition. 

 

3.7.11.2. New Design 

 Choose the same hyperplane-eigenvalue as above, recall that the system order is augmented 
     H i     50 50 0 5944 0 0234 0 0366, , ,H . . .   

for a unit step input, then Theorem  3.4 yields 

    u r s x r dt x xe i i i i

t T

    










0 5944 1

0
1 2. sgn , , ,K x x x   

where Ke   0 0 4856 3 1433 0 1, , .. .    
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Fig. 3.48: New Integral VSS Control with Unit Step Input for Example 3.11: No Steady-State Error 
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Note that the sliding variable of an augmented system in Eq.(3.14) has been used instead of the sliding 

variable of the original system. The magnitude of s seems to increase and the sliding condition is thus not 

satisfied, but it is not the case due to the chattering and its maximum magnitude is less than 5 10 4  . 

 

3.7.11.3. Discussion 

 The control effort in new integral VSS control is comparable to the case of regulator in Fig.3.47, but 

there is no steady-state error, cf. Fig.3.48. 

 

 

3.8. CONCLUSION 

 In the VSS literature so far, the designs have been obtained in different techniques, all the VSS control 

functions have to satisfy the sliding condition s s.   0. The range is too large to choose a negative number for 

the inequality above. For SISO  discontinuous VSS designs are White  et al. 1984 where a control function is 

designed to satisfy the sliding condition with a given hyperplane (Example 3.1), Sivaramakrishnan  et al. 

1984 to apply the hyperplane design by partition of Utkin et al. 1978 (Example 3.2), Hong  et al. 1989 with a 

proposed equal excursion sliding mode design to get an ideal sliding mode (Example 3.3), Lee  et al. 1991 to 

propose a nonlinear hyperplane for a fast system response (Example 3.4). For  continuous pseudo-VSS 

designs are Slotine  et al. 1983 where a saturate function is proposed,  Ambrosino   et al. 1984 and Spurgeon 

1991 with a unitvector function. 

 

 In this chapter, a unified VSS controller design has been developed. It is in a simple and unified manner 

with a SMC design rule applicable to all systems (linear or  nonlinear, SISO or  MIMO) and all approaches 

(continuous or  discontinuous VSS or  continuous pseudo-VSS, continuous-time or  discrete-time VSS, 

conventional or  integral VSS, and sliding-mode fuzzy control) . We have proposed some new features below 

 

 Different from the current stability criterion, we have analyzed this stability problem based on the 

mechanism of the SMC, then we have proposed a  simpler stability criterion for practical test applicable 

to SMC. 

 We propose a SMC design rule to choose a sliding margin to guarantee the existence of the sliding mode 

for the invariance property. This rule is very effective both in simulations and in experiments (Chapter 8). 

There is a simple illustration in Example 3.7. 

 

 The standard if-form in Utkin 1977 is a convenient form to write a control function that satisfies the 

sliding condition. Our derivation of a compact form is simple, valid and unified for linear or nonlinear 

systems with or without perturbation (to be used in Chapter 4, 7). First, based on the sliding condition we 

obtain the standard if-form, then by Lemma 3.1 we achieve the compact form; 

 



3. VSS Controller Design 3.43 

 The new design has been proposed to include the system dynamics into the reaching control. The 

conventional design may fail in fast systems since it uses the same sliding margin for all system states 

regardless the system dynamics. The faster are the system dynamics, the better are the new designs  in 

terms of lower control effort and higher sliding gain, that is less potential steady-state error (Example 

3.1 to 3.5) 

 

 There are 2 components in a conventional VSS control, they are reaching and sliding controls. The 

proposed integral VSS control is composed of 3 components where the first two are exactly the same as 

those in a conventional VSS control and the third is an additional integral control. The proposed integral 

VSS control with augmented system order has been shown to be efficient. It can cope with limitation 

using the integral sliding condition in Chang 1991 (Example 3.11) and solve the problem of pseudo-

SMC using integral of error in Chern et al. 1991. 

 

 The proposed analysis of the chattering problem is more comprehensive and precise than the works in 

Slotine  et al. 1983, Ambrosino   et al. 1984, Spurgeon 1991. Moreover our approach is in a unified 

manner for the saturate function and unitvector function. In addition, the introduction of the hyperbolic 

tangent to replace the saturate and unitvector functions for more convenient since TanH is a pre-defined 

mathematical function. The performances of the sliding functions are also analyzed and verified by 

simulations in Example 3.9 and by experimental results in Chapter 8. Note that this approach is a 

pseudo-VSS (Remark 3.4). 

 

 For the I/O-state method, we have seen that it is crucial to do a stability test (Section 3.2) when the 

relative degree is less than the system order. 

 

 In Section of numerical examples, all original designs in different approaches have been represented to 

compare with our proposed design in a unified approach. The following is a table to summarize the 

results on the performance in all the numerical examples above. The I/O-state method and the optimal 

method can be implemented in all methods (switching, saturate, unitvector and TanH VSS). For 

simplicity, the I/O-state method and the optimal method are implemented in the switching VSS control, 

so they may be compared to the equivalent switching control the normal case 

 

 I/O-state Optimal  I 

Ex 3.1 same as Switching same as Switching 

Ex 3.2 better than Switching better than Switching 

Ex 3.3 same as Switching same as Switching 

Ex 3.4 same as Switching same as Switching 
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Chapter  4 

 
A New Robust  Sliding Mode Controller-Observer  Design 

 
4.1. INTRODUCTION 

  In the current sliding mode control (SMC) literature, robust discontinuous SMC's have been 

developed for matched uncertain dynamical decouplable systems in Iyer et al. 1988 and for matched 

uncertain dynamical canonical systems in Emali et al. 1992. In Zhou et al. 1992 and Spurgeon et al. 1993, 

robust continuous pseudo-SMC with nonlinear control functions were developed for matched and unmatched 

uncertain systems. The former used a high order power functions and the latter used a unitvector function in 

place of a sign function. For these controllers, the sliding condition was satisfied with a boundary layer. 

 

 In this chapter, a new robust SMC design is fully presented in a unified manner for both discontinuous 

SMC (VSS) and continuous SMC control functions under both matched and unmatched uncertainties. The 

VSS design proposed in Chapter 3 is extended to deal with uncertain systems for VSS control functions. The 

control function is partitioned into 3 components: equivalent control, reaching control, and perturbation 

control. In the proposed linear SMC design, the control function is not only continuous but also linear. The 

continuous nature of this control function helps to eliminate the chattering problem in the standard VSS 

design. The advantage of the control function being linear is that some fundamental concepts of SMC design 

can be explained from the linear control theory framework. For example, the sliding margin can be shown to 

relate to the system eigenvalues. 
 

 As a SMC is based on a state-space model, an I-action may be required to eliminate a steady-state error. 

We will prove that the integral VSS control (discontinuous SMC) in Theorem 3.4 & 3.5 can be still applied 

to both robust discontinuous and linear SMC controls in this chapter. 
 

 Since the principal operating mode of a VSS control is the sliding mode, the VSS control can be seen as 

a subset of the SMC using discontinuous control functions. 
 

 Similar to state-space control design, SMC usually requires an observer for estimation of system states. 

In Bondarev et al. 1985, a linear Luenberger observer has been used as an observer of a VSS controller for 

deterministic linear systems (no uncertainties). In Walcott et al. 1987 and Yaz et al. 1993, a Lyapunov 

sliding condition has been used  to design an observer for a class of systems under matched uncertainty 

restricted to a certain system structure. In Slotine et al. 1987, a sliding patch condition has been used to have 

a region of direct attraction where uncertainty is not fully tackled. In fact, in Walcott et al. 1987, Slotine et 

al. 1987 and Yaz et al. 1993, to cope with uncertainty, a Lyapunov sliding condition has been employed to 

include a switching component into a linear Luenberger observer where a linearized model is used for a 

nonlinear system.  In Edwards et al. 1995, an observer has been implemented using output feedback 

technique. 
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 In this chapter, we propose a novel robust sliding mode observer design for a wide class of systems 

under both matched and unmatched uncertainty. This design is a dual extension of the new robust sliding 

mode controller design mentioned above. 
 

 Based on the work on invariance property in Drazenovic 1969, we prove that the matching condition is 

necessary and sufficient condition. They are  valid for both discontinuous and continuous SMC. 

 

4.2. ROBUSTNESS IN SMC 

 In  real dynamical systems, it is impossible to avoid uncertainties (due to imperfect modelling, due to the 

environment such as temperature, pressure...) and  external disturbances. So the crucial demand is a solution 

to the  robust control problem for uncertain dynamical systems. In the SMC literature, it is generally known 

that the main feature of SMC is its invariance to perturbations. This section shows what this "invariance" 

really means. 

 

4.2.1. Invariance Condition to Uncertainties 

Theorem 4.1: Invariance Condition to Uncertainty 

 Consider an uncertain dynamical system 
  

~. . ~ . .x A x B A A x B    u u  (4.1) 

where 
 x B A A, , , ~ ,   n n n u1              

the  sliding mode is invariant to parameter uncertainties if and only if the variation ~A  satisfies the 

matching condition 
 

~ . ,A B z z        1 n  (4.2) 

Proof 

 Consider a system 
  

~ ~x Ax B A A x B    u u   

and a hyperplane 

 s  Hx   

so, from Theorem 2.2, the sliding dynamics can be determined by 
   s      Hx x I B HB H Ax0 1 . ~   

or 
      . ~x I B HB H A A x  1   (4.3) 

 

(a) Necessary Condition (If Clause) 

 By Eq.(4.3), the sliding dynamics are  invariant if 
   I B HB H A x 1 0. ~.   
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for any x, so we obtain 2 cases as follows 
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by   c  0,then 

 
 

 
cb h b h i n
cb h b h i j n

i i i i

i j i j i j

     

      







1 0 0 1
0 0 0 1

   AND      
   OR      

, ,
, , ,  : contradiction!  

 
 Case    :  B HB H A x A x 1 . ~. ~.  , then there exists at least one solution 

 
~ . ,A B z z       1 n  

 

(b) Sufficient Condition (Only-If  Clause) 

 Eq.(4.2) gives 
        I B HB H A I B HB H Bz B B 0      1 1. ~ . . z   

thus the sliding mode is invariant by Eq.(4.3). 

  Q.E.D. 

 

Remark 4.1: Form of Matching Condition 

 Note that z takes an arbitrary value, so the matching condition requires the form rather the actual value. 
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Corollary 4.1: Alternative Form of Matching Condition 

 The system 
    

~ ~ ~ ~x Ax B A A x B B     u u    

is under matching condition if 

 


~. . ,A x B  v v1 1     
 (4.4.a) 

and 
 

~ . ,B B  v v2 2      (4.4.b) 

then 
  x Ax B  u v  (4.4.c) 

 

Proof: 

 Post-multiply x to the matching condition in Eq.(4.2), we have 
 

~. ~. . ~.A x B z x B  v1   

since x and z are arbitrary, so is v1 . We also have 

 
~. . . .B B Bu v u v 2 3   

thus Eq.(4.4.c) is achieved. 

  Q.E.D. 

 

Corollary 4.2: Canonical System with Matching Condition 

 Any canonical system satisfies the matching uncertainty condition. 

Proof 

 Consider an uncertain dynamical canonical system 
    

~ ~ ~ ~ ,x Ax B A A x B B     u u    

where 

 A A B B
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0 0 0 0

0 0 0 0

0
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0

0
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a a a a a a a a b bn n n n

, ~ , , ~


   





  

thus the matching condition is satisfied, since 

  
~. ~. .A x B B u v   

 Q.E.D. 
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4.2.2. Invariance Condition to Disturbances. 

Theorem 4.2: Sufficient Invariance Condition to Disturbance 

 Consider a linear system under disturbances 

  . . .x A x B W  u v   
the sliding mode is  invariant to disturbances if and only if the matching condition is satisfied 
 W B  . ,z z      (4.5) 

where 

 x B W A, , , , ,   n n n u v1             

Proof 

 In the sliding mode 
 Hx Hx H Ax B W HAx HB HW          0 0 0 0 . . . .u v u v    

so the equivalent control 
 u veq   HB H Ax W   1 .   

then the sliding equation 

 
 . .x I B HB H Ax W

Hx

  







   1

0

v
  

thus, similarly to the case of uncertainties above, the sliding mode is invariant to disturbances if and only if 
 I B HB H W 0 W B       1 . . . ,v z z       

 Q.E.D. 

 

Remark 4.2: Invariance Property of Sliding Eigenvalues under Matching Condition 

 By Theorem 3.1 on a stability test, we have 

 In case of the system without any perturbation, the sliding-eigenvalues are equal to the hyperplane-

eigenvalues, hence the Hurwitz hyperplane-eigenvalues do guarantee the stability of the system. 

 Under perturbations satisfying the matching condition, the sliding-eigenvalues are absolutely unchanged 

and equal to the hyperplane-eigenvalues, so the Hurwitz hyperplane-eigenvalues also do guarantee the 

stability of the system. 

 

4.3. A NEW ROBUST VSS CONTROLLER DESIGN (DISCONTINUOUS SMC) 

 A discontinuous control is also called  a switching control. As mentioned in Chapter 3, there are 2 VSS 

control types, but only the first type can be extended into a robust VSS control. A robust VSS control 

function consists of  3 components, namely equivalent, reaching and perturbation controls, where the first 

two are similar to the normal VSS and the third additional one is to deal with perturbations. Different from 

the VSS literature so far (White  et al. 1984, Sivaramakrishnan  et al. 1984, Hong  et al. 1989, Lee  et al. 

1991), our proposed design is extended from Chapter 3 where all designs are done in a unified manner. 
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 First we propose an assumption which is practically satisfied in the real world 

Assumption 4.1: System Constraint on Parametric Variation 

 A system matrix B takes any variation such that the polarity of HB  is unchanged, i.e. 

    sgn sgnHB HB B B~ ~
     (4.6) 

where 

 ~ ~B B B     
 

 Under Assumption 4.1, we propose the following theorem to design a robust VSS controller 

Theorem 4.3: Robust VSS Controller Design under Uncertainty and Disturbance 

 For a linear system under perturbations (uncertainties and disturbances) 
    

~. ~. . ~ . ~ . .x A x B W A A x B B W       u v u v    

and a hyperplane 

 s  H x.   

with 
    

~ , ~ ,A A B B            v v   

then, under Assumption 4.1, there exists a constant   0 for a  VSS control function to be determined as 
 u u u ue r p    (4.7) 

where 

  equivalent control 
  ue e e   K x K HB HA. , 1  (4.7.a) 

  reaching control 
    u sr r r  HB K x K H1 . . , .sgn   (4.7.b) 

  perturbations control 

    
   

 u K s K
v

xp p p p p i     0 0K x
H W

HB HB
K

H A

HB HB
x. . ,

.

inf ~ .sgn
,

.

inf ~ .sgn
,sgn      


 

  (4.7.c) 

with 
 x B B W A A H, , , , , , , , , ,       


n n n n u s v1 1                         

Proof 

 We have 

  
~ ~s u v   Hx HAx HB HW  

substituting Eq.(4.7) gives 

      
~ ~ ~

. . .

~

inf ~ . . . .s v s v s     HAx HW HB
HB

HAx HB
HB

H x
HB

HB
H W H A x sgn sgn   

      
~

. . .

~

inf ~ . . . ~.
~ ~

inf ~ . . . .s s v v s s   












   

HB
HB

H x HW
HB

HB
H W H A x HB

HB
HAx

HB

HB
H A x sgn sgn sgn    
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or 

 ss s s s v s v s s .
~

. .
~

.

~

inf ~ . . ~. .

~

inf ~ . . .    












  















HB
HB

H x HB
HB

HAx HW
HB

HB
H W H A x

HB

HB
H A x     

then the Assumption 4.1 guarantees the existence of a sliding margin   0 such that ss  0 for a bounded-

input bounded-output system. 

 Q.E.D. 
 

Remark 4.3: Robust VSS Controller Design under No Perturbations 

 If there is no perturbation, we have 
 ~ , ~ , , ,A A B B A 0 B 0      v 0   

then by Eq.(4.7.c), the perturbation control vanishes 
 up  0   

and the control function in Eq.(4.7) becomes  
 u u ue r    

it is exactly the same as in Eq.(3.4) for the normal case without perturbation. 
 

Remark 4.4: Equivalent Control in Robust VSS Controller 

 Consider a system under no perturbations 

 x Ax B  u   

and a hyperplane 

 s  Hx   

then, by Eq.(3.4), a discontinuous VSS control function can be determined by 
 u u ue r    

with 

 
u

u

e

r









HB HAx

HB H x

 
   

1

1

                 :  equivalent control

.sgn s  :  reaching control. .
  

Once in the sliding mode, s s  0 0sgn  , by definition, so 

 u ue   

 Now, under perturbation, A and B are unknown, so the equivalent control  above,  ue 


HB HAx~ ~1
, is 

undefined. It is impossible to design a control function by the above formula. By Eq.(4.7), it is possible to 
determine a control function since  ue   HB HA x1 .  is defined. This component is termed "equivalent 

control" since the control function reduces to this component once in the sliding mode, by definition it must 

be the equivalent control. 
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Corollary 4.3: Robust VSS Controller under Reduced Parametric Variation 

 If 

 B 0   

then the  VSS control function in Theorem 4.3 becomes 
 u u u ue r p    (4.8) 

where 

  equivalent control 
  ue e e   K x K HB HA. , 1  (4.8.a) 

  reaching control 
    u sr r r  HB K x K H1 . . , .sgn   (4.8.b) 

  perturbations control 
          u K s K v xp p p p p i      

0 0
1 1K x HB H W K HB H A x. . , . , . ,sgn        

  (4.8.c) 

with 
 x B W A A H, , , , , , , , ,      


n n n n u s v1 1                         

 

4.4. A NEW ROBUST LINEAR SMC DESIGN 

 First we start with a basic linear SMC without any perturbation where its control function is composed 

of  2 components: an equivalent control and a reaching control. Next we present a robust linear SMC under 

an un-matched perturbation where its control function  is composed of 3 components: an equivalent control, 

a reaching control and a perturbation control. Then the matched perturbation is a special case of the un-

matched one. To the best of our knowledge, there was only one work on the robust continuous SMC in Zhou 

et al. 1992. 
 

               Current Design                 Proposed Design 

 pseudo-SMC: derivation unavailable  SMC: precise derivation 

 non-linear continuous control function  linear continuous control function 

 both sliding margin, and boundary layer are 

used in design 

 only sliding margin is used in design 

 N. A.  sliding margin and hyperplane-eigenvalues are 

system-eigenvalues 

 N. A.  design separation: equivalent control, reaching 

control, and perturbation control 
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4.4.1. Linear SMC 

 Different from the SMC literature so far (DeCarlo  et al. 1988, Zhou  et al. 1992), it is shown that a 

sliding margin and hyperplane-eigenvalues are the closed-loop system-eigenvalues. This is a criterion which 

is used to choose a sliding margin in designing a linear SMC control function. 

Theorem 4.4: Linear SMC Design 

 For a linear system 

 x Ax B  u   

with a hyperplane 

 s  Hx   

then a linear SMC function can be determined by 
 u e r    Kx K K x .  (4.9) 

where 

  equivalent control 
 K HB HAe 

  1  (4.9.a) 

  reaching control 
 K HB Hr 

  1 .  (4.9.b) 

with 
 x B A H, , , , , ,      


n n n n u s1 1                         

Proof 

 From a hyperplane equation 
  .  . . .s u u    H x H A x B HB HB HAx    1   

by the above control function 
 u

s
     Kx HB HAx HB Hx    1 1 . ;   

hence 
  . . . . .  .s s s s s s         HB HB  1 2 0   

thus the sliding condition is satisfied. Q.E.D. 
 

 To design a SMC, we must choose . To do so, we propose the following theorem. 

Theorem 4.5: Closed-Loop Eigenvalues composed of Hyperplane Eigenvalues and Sliding Margin 

 If a system has a sliding margin  and a hyperplane-eigenvalue H  
 H

n 
 

 
 1 1   

then the system closed-loop eigenvalues are determined by 
   C H

n   , 1  (4.10) 

Proof:  

 By definition of eigenvalues: eig M I M      i idet 0 , from (4.9.a) 

 A BK A B HB HA H A B HB H A I              1 1. . .    

  To prove   is one of the eigenvalues, we have to prove 
 det det                . . .I A BK HB BH I A I0 01  (4.11) 
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 By the properties of a determinant 
 P Q P Q Q P P Q. . . , ,        n n   

and 
 I P Q I Q P P Qn m

n m m n     . . , ,       

then Eq.(4.11) is satisfied since 
 HB BH I HB HB I       1 1 0   

 Thus we can write 
     I A B HB HA HB H              1 1 1. P * n  (4.12) 

Eq.(4.12) holds for all  , so it must hold for   0, then Eq.(4.12) becomes 
   I A B HB HA       1 1P * n  (4.13) 

From Eq.(2.10), we obtain 
     I A B HB HA           1 1 1 0P Pn

H i
n- - :    (4.14) 

by Eq.(4.13), we achieve 
 P P*  n n 1 1      

this proves that H  are the remaining eigenvalues. 

 Q.E.D. 

 

Remark 4.5: Reduced Order of Sliding Mode 

 In the sliding mode, the system states are sliding on the hyperplane. Eq.(4.10) shows that the sliding 

mode is reduced order. 

 

4.4.2. Robust Linear SMC 

 In Section 4.3, both disturbances and uncertainties are simultaneously taken into account in designing a 

robust VSS control function (discontinuous SMC). To design a robust linear SMC function, due to 

mathematical derivations, disturbances and perturbations are considered separately. 
 

 For uncertain dynamical systems in Zhou et al. 1992 and Spurgeon et al. 1993, the control function is 

not only complicated, but is also pseudo-sliding mode since the sliding condition is not satisfied within the 

boundary layer (Remark 3.4). Still  both the sliding margin and boundary layer are used in the design and it 

is not clear how to determine them. In fact, there is no proof for the proposed formulas! Moreover, the 

control function is nonlinear even for a linear system; and for both cases of disturbances and uncertainties, it 

is a  pseudo-SMC only! 
 

 We propose an alternative approach to designing a linear SMC function for the case of uncertainties. It 

is simple for linear systems: only the sliding margin is used with the design rule (Section 3.4) and is not 

pseudo-SMC. Moreover, the control function is linear for a linear system and even for a certain class of non-

linear systems. For the case of disturbances, we can get the pseudo-SMC only. 
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4.4.2.1. Robust Linear SMC under External Disturbances 

Theorem 4.6: Robust Linear SMC Design under External Disturbance 

 Consider a linear system under external disturbances 
  . . . ,x A x B W   u v v v  (4.15) 

with a hyperplane equation 

 s  Hx   

where 

 x B W A H, , ; ; ; , ,     n n n n u v s1 1                 

then a robust linear SMC function can be found from 
 u e r p    K x K K K K. ,  (4.16) 

where 

  equivalent control 
 K HB HAe 

  1  (4.16.a) 

  reaching control 
 K HB Hr 

  1 .  (4.16.b) 

  perturbation control 
    K HB H HWp p v 1 . sup .  (4.16.c) 

if the following disturbance condition is satisfied 

  s
v

vp




sup .
sup .
HW

HW 
 (4.17) 

where  p  is a sliding margin for disturbance. 

Proof 

 From Eq.(4.16), we have 
           s s s v s vp.  . sup .        HB HB HAx HB HW HB HAx HB HW1 1 1 1    

or 
     s s s v s v v s v sp p.  . sup . sup . .          HW HW HW HW2   

so 
     s s s v s v v s v sp p.  . sup . sup . .          HW HW HW HW2   

since 
 sup sup .HW HWv v   

From 
    p vsup .HW 0   

we consider the following 2 cases 
 

 if  HW HW
HW

v v
vp

 


0 0
  sup .

 

s                                                   0                                                 HW
HW
v

vp  sup .
 

s. s                                                 0                           +                                0                        
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 if  HW HW
HW

v v
vp

 


0 0
  sup .

 

s                                                    HW
HW
v

vp  sup .
                                              0 

s. s                                                             0                            +                           0             
 

 Therefore, in the most conservative case, the sliding condition is satisfied when 

 s
v

vp




HW
HW
.

sup . 
  

  Q.E.D. 

 

Remark 4.6: Disturbance Condition in Sliding Mode 

 The disturbance condition in Eq.(4.17) means that there is no sliding mode in the boundary layer of 

width 
sup .

sup .
HW

HW
v

vp 
, so strictly speaking, it is a pseudo-sliding mode. 

 

Remark 4.7: Validity of Theorem 4.6 under No Disturbance 

 If there is no disturbance, we have 
 sup .HW v  0   

then by Eq.(4.17.c), the perturbation control vanishes 
 K 0p    

and the control function in Eq.(4.17) becomes exactly the same as in Eq.(4.8) for the case without 

perturbation. 

 

4.4.2.2. Robust Linear SMC under Parametric Uncertainties 

Lemma 4.1: Computation of Special Eigenvalues 

 For any H  1 n  and any M  n n , we have 
 Eig H HM H HM 0T T T





      ,  (4.18) 

where   HMH HH HM HMT T T,     (4.18.a) 

Proof:  

 We will prove by induction. By the definition of eigenvalues Eig P I P      i i 0 , we can prove 

that Eq.(4.18) is true for n  2 . . By induction, Eq.(4.18) is true up to n. 

  Q.E.D. 
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 We propose the following theorem for both  matched and un-matched uncertain dynamical systems. 

Theorem 4.7: Robust Linear SMC Design under Parametric Uncertainty 

 Consider a linear system under both matched and unmatched parametric uncertainty 
    

~. ~. ~ . ~ .x A x B A A x B B     u u   

and a hyperplane 

 s  H x.  

where 
    

~ , ~A A B B            

with 

 x A A B B H       n n n n n u s1 1 1, , , , , , ,                       

then under Assumption 4.1, there exists a sliding margin   0 for a robust SMC to be determined as 
 u e r p    K x K K K K. ,  (4.19) 

where 

  equivalent control 
  K HB HAe 

1  (4.19.a) 

  reaching control 
  K HB Hr 

1 .  (4.19.b) 

  perturbation control 

 
 

 
 K

H A B K K

HB HB
Hp

e r


 
















. .

inf ~ .sgn
sgn

 
 (4.19.c) 

with 
 K K K Me r p

n
ijm, , , ,  


1         ,          p q p qij ij ij ij  .  

Proof 

 We have 
    

~ ~ . ~. . ~.s u u u       H A A x H B B HAx H A x HB H B      

by Eq.(4.19), we obtain 
   . ~. . ~. . ~s s e r p      HAx HAx H A x H B K K x HBK x     

so 
   ss s s sp e r

T T . ~ ~. ~ .         2 2H BK B K K A x x H HM x   (4.20) 

where 
  M BK B K K A   

~ ~. ~
p e r   (4.21) 

The quadratic form requires a symmetric matrix, Eq.(4.20) can be read as 
 ss s T T T T

    



 2 1

2 x H HM H HM x   (4.22) 

The sliding mode ss  0 is satisfied if the quadratic term is non-negative, that is the matrix is positive-semi-

definite, so all eigenvalues must be non-negative. By Lemma 4.1, this can be achieved if both sum and 

product of 2 eigenvalues are non-negative, that is 
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 2 0   (4.23.a) 
  2 0   (4.23.b) 

We will use the first condition in Eq.(4.23.a) to compute the perturbation control and the second condition 

will be used to check. 
 

(a) 

 Eq.(4.18.a) can be written as 

   H M H. . T  (4.24) 

In view of Eqs.(4.19.c) and (4.21), we get 

 
 

 
      

 

























  HMH HB

H A B K K

HB HB
H H H A B K K HT e r T

e r
T~ . .

inf ~ .sign
sgn . . ~ ~. .

 
    

or 

           
HB

HB
H A B K K H H A B K K H

inf ~ . . . . ~ ~. .   e r
T

e r
T   

since 
HB

HBinf 
 1 by Assumption 4.1, so   

            H A B K K H H A B K K H. . . . ~ ~. .   e r
T

e r
T 0   

(b) 

 By Eq.(4.18.a), Eq.(4.23.b) can be written as 
  2 2 2 2 LH H LT  ,  (4.25) 

where 

 L HM  (4.25.a) 

By the Schwartz's Inequality 
 LH L HT   .    (4.26) 

so there is a negative eigenvalue. However, both sides of Eq.(4.26) are the same order, so the negative 

eigenvalue can be expected too small compared to the positive one, ie. the quadratic term in Eq.(4.20) will 

contribute negative value to the sliding condition. In addition, the first term in Eq.(4.20) will even make 

more negative. 

  Q.E.D. 

 

Remark 4.8: Robust Linear SMC Design under No Uncertainty 

 If there is no uncertainty, we have 
 ~ , ~ , ~ , ~A A B B A 0 B 0       

then by Eq.(4.26.c), the perturbation control vanishes, and the control function in Eq.(4.26) is exactly the 

same as in Eq.(4.8) for the case without perturbation. 
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Corollary 4.4: Robust Linear SMC Design under Reduced Parametric Variation 

 If 

 B 0   

then the linear SMC in Theorem 4.7 becomes 
 u e r p     K x K K K x.    (4.27) 

where 

  equivalent control 
  K HB HAe 

1  (4.27.a) 

  reaching control 
  K HB Hr 

1 .  (4.27.b) 

  perturbation control 
      K HB H A Hp  1 . sgn  (4.27.c) 

 

Remark 4.9: Equivalent Control in Robust SMC Design 

 The first component in Eq.(4.27) is termed "equivalent control" due to the same the argument in Remark 

4.4, that is the control function reduces to the equivalent control once in the sliding mode. 

 

4.4.2.3. Robust Linear SMC under Matched Parametric Uncertainties 

 Under uncertainties, all what can be guaranteed is that if the sliding-eigenvalues are Hurwitz, then so are 

the system-eigenvalues, ie. the closed-loop system is stable (Theorem 3.1). Under the matching condition, 

we have very interesting characteristics by the following theorem. 

Theorem 4.8: Robust Linear SMC Design under Matched Uncertainty 

 If a matched uncertain system has all elements of H of the same polarity, then the system-eigenvalues at 

the upper boundary for are 
   C H, ,2    (4.28) 

Proof 

 From Eq.(4.3), a matched uncertain system takes the form 
  

~ . .x A A x B   u   

where 

 
~ .A B v   

 
From Eq.(4.19.c) with ~B 0  and with h si '  of the same polarity, without loss of generality, assume the 

positive polarity 
    K HB H A HB H B v vp      1 1. . .  (4.29) 

Thus the system-eigenvalues at the upper boundary, A A A   , are 
         C e r p er er er e r2             eig eig eigA A B K K K A B v B K v A B K K K K . . . . ,  
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 Recall that, under no perturbation we have 
    eig .A B K  er H,   

so 
     C er H2    eig A B K. ,  

  Q.E.D. 
 

 Theorem 4.8 has shown that system eigenvalues of an uncertain dynamical system at upper boundary 
 A A   are equal to those of a deterministic dynamical system. We propose the following design rule to 

move these eigenvalues inside the bounds by shifting down the nominal values of the system matrix. 

 

Proposition 4.1: Robust Linear SMC Design Rule 

 Theorem 4.8 is valid for matched uncertain systems and H has all element the same polarity. In general, 

choosing the nominal system matrices as 
 A A A B B B   1

2
1
2 ,   

in designing a hyperplane may produce a more robust controller. 

 

Remark 4.10: Advantage of Robust Design Rule 

 An advantage from the proposition above is system-eigenvalues of the nominal model are  , H  

for matched uncertain systems and H has all element the same polarity 

 

4.4.2.4. Robust Linear SMC under Un-matched Uncertainty and Disturbances 

 From Theorem 4.6 and 4.7, we propose the following corollary to design a robust linear SMC for 

systems under unmatched uncertainty and disturbances 
 

Corollary 4.5: Robust Linear SMC Design under Un-matched Uncertainty and Disturbance 

 Consider a linear system under unmatched parametric uncertainty and external disturbances 
    

~. ~. . ~ . ~ . .x A x B W A A x B B W       u v u v   (4.30) 

and a hyperplane 

 s  H x.  

where 
    

~ , ~ ,A A B B                      v v  

with 

 x A A B B H       n n n n n u s1 1 1, , , , , , ,                       

then, under Assumption 4.1, a robust linear SMC function is determined by 
 u e r p    K x K K K K. ,  (4.31) 

where 

  equivalent control 
  K HB H Ae 

1 .  (4.31.a) 
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  reaching control 
  K HB Hr 

1 .  (4.31.b) 

  perturbation control 
 K K Kp u d   (4.31.c) 

  * uncertainty control 

 
 

 
 K

H A B K K

HB HB
Hu

e r


 
















. .

inf ~ .sgn
. sgn

 
 (4.31.d) 

  * disturbance control 
    K HB H HWd p v 1 . sup .  (4.31.e) 

if the following disturbance condition is satisfied 

 s
v

vp




sup .
sup .
HW

HW 
 (4.31.f) 

with 
    K K K K K Me r p u d

n
p ijm, , , , , , ,  


1         

Proof 

 Eqs.(4.31.a), (4.31.b) and (4.31.d) can be determined by Theorem 4.7. Since the uncertainty control 

tackles uncertainty, Eq.(4.30) can be read as 

  . . .x A x B W  u v  (4.32) 

so Eq.(4.31.e) can be determined from Eq.(4.32) using Theorem 4.6. 

  Q.E.D. 

 

4.4.2.5. Alternative Formula for Robust Linear SMC 

 Alternative to Theorem 4.7, under Assumption 4.1, we propose a theorem for a robust linear SMC. We 

first present the following lemma 

Lemma 4.2: Alternative Computation of Special Eigenvalues 

 For any V  1 n  and any M  n n , we have 
    Eig . , , ,V V M VMVT T 0 0  (4.33) 

Proof:  

 We will prove by induction. By the definition of eigenvalues    Eig P I P   i i 0 , we can prove 

that Eq.(4.33) is true for n  3. 

 Let 

 P V VM3

1 1
1

3

1 2
1

3

1 3
1

3

2 1
1

3

2 2
1

3

2 3
1

3

3 1
1

3

3 2
1

3

3 3
1

3

 

























  

  

  

  

  

  

T

i i
i

i i
i

i i
i

i i
i

i i
i

i i
i

i i
i

i i
i

i i
i

v v m v v m v v m

v v m v v m v v m

v v m v v m v v m

 (4.34) 
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so 

   I V VM  






T
i j ij

ji
v v m2

1

3

1

3

 (4.35) 

 Assume that Eq.(4.33) is true up to n 1. Note that the non-zero eigenvalue in Eq.(4.35) is equal to the 

sum of diagonal elements in Eq.(4.34). So we can prove that Eq.(4.33) is also true for n by using some 

properties of the trace of a matrix as follows 

 tr Pn ii
i

n

p  



1
  

 tr , EigP Pn i
i

n

n i      

 

1
  

 tr tr trP P P Pa b a b          

where 

  P V VMn
T

n

n

n

n

n n nn

n

n

n n n n

n

n

n n nn

v
v

v

v v v

m m m
m m m

m m m

v v v v v v
v v v v v v

v v v v v v

m m m
m m m

m m m

 











































































1

2
1 2

11 12 1

21 22 2

1 2

1 1 1 2 1

2 1 2 2 2

1 2

11 12 1

21 22 2

1 2








   







   







   



 

or 

 Pn

i i
i

n

i i
i

n

i in
i

n

i i
i

n

i i
i

n

i in
i

n

n i i
i

n

n i i
i

n

n i in
i

n

v v m v v m v v m

v v m v v m v v m

v v m v v m v v m





























  

  

  

  

  

  

1 1
1

1 2
1

1
1

2 1
1

2 2
1

2
1

1
1

2
1 1





   



  

and 

 P P P P P Pn a b a n b

i in
i

n

i in
i

n

n i i
i

n

n i i
i

n

n i in
i

n

v v m

v v m

v v m v v m v v m

   

































  





  

, ,1

1
1

2
1

1
1

2
1 1

0 0

0 0



  

 



  

  Q.E.D. 

 

We then have the following theorem 

Theorem 4.9: Alternative Robust Linear SMC Design 

 Consider the following system 
    

~ ~ ~ ~ , ~ , ~x Ax B A A x B B A A B B       u u       (4.36) 

and 

 s  Hx   

then under Assumption 4.1, a robust SMC can be determined by 
 u e r p    Kx K K K K,  (4.37) 

where 
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 equivalent control 
  K HB HAe 

1  (4.37.a) 

 reaching control 
  K HB Hr 

1  (4.37.b) 

 perturbation control 

  
 
 

K HB H
H A B K K H

HB H B HH
p

e r
T

T
 

 






1
11

 ,
.

.

 


 (4.37.c) 

Proof: 

 From Eq.(4.37), we have 

 
~ ~ . ~. . ~.s u u u     HAx HB HAx H A x HB H B    

by Eq.(4.37), we obtain 
   . ~. . ~. . ~s s e r p      HAx HAx H A x H B K K x HBK x     

so 
      ss s s sp e r

T T
p e r . ~ ~. ~ . ~ ~. ~

            2 2H BK B K K A x x H H BK B K K A x      

thus ss  0 only if   H H BK B K K AT
p e r. ~ ~. ~
     is semi-positive definite. If so required, Lemma 4.2 

yields 
        H BK B K K A H. ~ ~. ~

p e r
T  0  (4.38) 

 In view of Eq.(4.19.c), Eq.(4.38) can be read as 
              H BK B K K A H HBK H H A B K K H. ~ ~. ~ ~ ~ ~.p e r

T
p

T
e r

T      

 
 
     
 


  



H A B K K H

HB H B
H A B K K H

 


 

.

.
~ ~.e r

T

e r
T

1 1
  

or 
           H A B K K H H A B K K H   . ~ ~.e r

T
e r

T   

since Eq.(4.6) in Assumption 4.1 gives 
 H B HB H B HB HB H B HB H B. ~ .              0 0 1 0 1 11 1   

so Eq.(4.38) can be achieved. 

  Q.E.D. 

 If ~B 0 , we have the following corollary 

Corollary 4.6: Alternative Robust Linear SMC Design under Reduced Parametric Variation 

 Consider the following system 
  

~ ~ , ~x Ax B A A x B A A     u u     

and 

 s  Hx   

then a robust SMC can be determined by 
 u e r p    Kx K K K K,   

where 
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 equivalent control 
  K HB HAe 

1   

 reaching control 
  K HB Hr 

1   

 perturbation control 

  K HB H
H A H

HHp

T

T 1  ,
. .

  

 

4.5. ROBUST INTEGRAL SMC DESIGN 

 A SMC is based on a state-space model, an I-action may be required to eliminate a steady-state error. 

We have the following corollary to design a robust integral SMC using Theorem 4.3 or 4.9. 
 

Theorem 4.10: Robust Integral Linear SMC Design under Uncertainty 

 Consider an uncertain dynamical linear system system 

    
~ ~ ~ ~ , ~ , ~x Ax B A A x B B A A B B

Cx

       









u u

y

     
  

and its augmented-order system with a reference input of r 
 

~ . ~ .x A x Bi i i i u   (4.39) 

where 

 ~
~ , ~

~A
C

0 A
B

Bi
n

i








 












0 0

1
 (4.39.a) 

then a robust integral SMC with a hyperplane H i  can be determined by 
 u u ui *

~  (4.40) 

where 
     u h r h hi i i i i i n* , , ,, 


H B H1

1 1 1  (4.40.a) 

and  
 ~ui  is a robust SMC  for Eq.(4.39) and can be determined by Theorem 4.3 or 4.7.  

with 
 x B A C, , , , , , ~ , ,*     n n n n

iu u u y r1 1               :  sliding margin.  

Proof 

 Let 

  x y r dt x y r
t

0
0

0       

then 

 



~ ~ ~ ~ . ~ ~ . .

x y r
u u

r
x

u r
n n n

0

1 1

0

1

0 1 0 0 1
x Ax B

Cx
Ax B 0

C
0 A x B 0









 












 









 









 









 


















 








 











  

 

from Eq.(4.39.a), we have 

  . . .x A x B
0i i i i

n
u r  













1

1
 (4.41) 
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since the uncertain component of u can tackle any uncertainty  Bi , Eq.(4.41) is still hold for  B 0i   so it 

can be read as 

 
~ .~ ~ . . ~ .~ . .x A x B

0
A x B

0i i i
n

i i
n

u r u r  








   











 

1 1

1 1
 (4.41.a) 

thus 

  
~ ~ . . ~ ~

,s u r u h ri i i i i i i i i
n

i i i i i i   








   



H x H A x H B H
0

H A x H B
1

1
1  

by Eq.(4.40.a), we have 
 

~ ~ ~ ~ ~
*s u u ui i i i i i i i i i i i i i    H A x H B H B H A x H B  (4.42) 

since ~ui  is a robust SMC for Eq.(4.39), the sliding condition ~~s s  0  is satisfied using Eq.(4.42) 

  Q.E.D. 

 

4.6. A NEW ROBUST LINEAR SLIDING-MODE OBSERVER DESIGN 

 As in the state-space observer design where an the response of an observer is 3 to 10 faster than that of a 

controller, to design a robust linear Sliding-Mode Observer (SMO), we propose the following theorem 

Theorem 4.11: Robust Linear Sliding-Mode Observer Design under Uncertainty 

 Consider the following uncertain dynamical system 

 
   

 


~ ~ ~ ~

~ ~
x Ax B Ax A x B B

Cx C C x

     

  









u u

y

 


 (4.43) 

where 
    

~ , ~A A B B            

if the system is observable, then a robust linear SMO can be found from 
     

~
x Ax B L y y , y Cx    u  (4.44) 

where 
 L L L L  e r p  (4.44.a) 

with 
  L AH CHe o o

/ / 1
 (4.44.b) 

    L H CHr o o o o  


  / / , ..
1

3 10  (4.44.c) 

    
 

L H
A L L C H

H C H C
p o

e r o

o o

 
 

sgn
. .

inf
~

.sgn

/ /

/ /

 
 (4.44.d) 

or the alternative 

    
 

L H CH
H A C L L H

H C H C H H
p o o o o

o e r o

o o o o

 
 










 / /

/ / /

/ / /
,

. . .

. . .

1

1
1

 


 (4.44.e) 

and 
 Ho  is determined by the eigenvalue allocation with the observer hyperplane-eigenvalues 

     Ho Hc o Ho
   3 10.. hyper , ,/ /H A C    

  , , , , , , , , , ,x y A A B B C C H           n p n n n p n n u s1 1 1 1                                  
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Proof 

 Since L will be determined under uncertainty, Eq.(4.44) can be perturbed to read as 
        

~


~ . 
~


~ . x A A x B B L y y Ax B L y y           u u   

then an error equation e x x   can be determined by 
      

~


~ . 
~. ~. ~ ~

.e x x Ax B L y y A x B A LC e         u u  (4.45) 

To determine L, we will find a function v to nullify the error by the following equation 

 
~ ~/ /e A e C  v  (4.46) 

By Theorem 4.7, we can find 
 v  L e/  (4.47) 

where  L/  is determined by Eqs.(4.44), so Eq.(4.46) can be read 

  
~ ~ ~ ~ ~/ / /

/
e A e C L e A LC e     (4.48) 

since eig eigM M    / , we have the following mapping to complete the proof 

 ~ ~ , ~ ~
, ,/ / /A A B C H H K L   o  (4.49) 

so Eqs.(4.44) have been proved. 

  Q.E.D. 

 

4.7. ANALYSIS OF MATCHED AND UNMATCHED UNCERTAINTIES 

 We will analyze matched and unmatched uncertainties in transfer function and state-space models. 

 

4.7.1. Transfer Function Model 

 Consider a system 

 G s
b b s

s a s a
   




 
0 1

2
1 0

1
 (4.50) 

then the minimal realization is 

 
x Ax B

Cx
 



u

y
 (4.51) 

where 

 A B C D
 





 





  

0 1 0
1 0

0 1 0
1a a b

b, , , ,  (4.51a) 

We want to find a transformation T 

 x Tx   (4.52) 

such that 
 CT  1 0,  (4.53) 

thus 

 T T






  








1
0 1

1
0 1

1 1 1b b
 (4.54) 

then 
 y x    Cx C Tx CT x C x .   .      1 (4.55) 
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and Eq.(4.51) becomes 

 
   

 

x Ax B

Cx

 







u

y
 (4.56) 

where 

  ,  ,  ,A T AT B T B C CT 
   

 






 






   1 1 0 1 1 1

2
0

0 1 1 0

1 1 0

0

1
1 0

b a b a b a
a a b a

b b
b

 (4.57) 

 
(a) If b1 0 , then Eqs.(4.50) & (4.57) gives 

 G s
b

s a s a
  

 
0

2
1 0

 (4.58) 

and 

  ,  ,  ,A B C







 






 

0 1 0
1 0

0 1 0a a b
 (4.59) 

Thus, if all parameters are uncertain, we have matched uncertain system. 

 
(b) If b1 0 , assume that 

 u k k
x
x

k x k x   




   Kx .




 1 2

1

2
1 1 2 2  (4.60) 

then Eqs.(4.56) & (4.57) give 

 
   

 

x Ax B

Cx

 







u

y
 (4.61) 

where 

  , A B
     

 















b a k b b b a b a k b b
a a b a b

1 0 1 1 0 1 1 1
2

0 2 1 0

0 1 1 0 0

1 0
 (4.62) 

thus it is unmatched uncertain system. 

 

We can generalize the above analysis to have the following proposition 

Proposition 4.1: Uncertainty in Transfer Function Model 

 In general, we have 

 A matched uncertain system has the model 

  G s
b

s a s a s an
n

n  
   





  
0

1
1

1 0
 (4.63) 

where the minimal realization can be used. 

 An unmatched uncertain system has the model in Eq.(4.63), but its minimal realization cannot be 

applied due to inaccessibility of system states, or it has the model 

  G s
b s b s b

s a s a s a
n

n

n
n

n     
   







  

  
1

1
1 0

1
1

1 0




 (4.64) 

where  , a bi i  are uncertain. 
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4.7.2. State-Space Model 

 We will analyze an uncertain state-space model and consider if we can convert an unmatched uncertain 

system into a matched uncertain system. 

 

4.7.2.1. Analysis of Uncertain State-Space Model 

 Consider an uncertain system 
     .  .x A A x B B Ax A x B B             u u u  (4.65) 

Let 

  A Wz  (4.66) 

and 
   . .B Bu v 1  (4.67) 

where 
   ,A W  n n n 1   

and    z 1
1

n v,  are uncertainties. Then Eq.(4.63) becomes 

  .x Ax Wz x B B   u v1  (4.68) 

Since z is an uncertainty, let 
 zx  v2  (4.69) 

where v2  is also an uncertainty; then Eq.(4.68) can be written as 

 x Ax B W   u v v1 2   (4.70) 

Therefore, 

 

 for a matched uncertain system, we have 

  W B  (4.71) 

so Eq.(4.70) becomes 
  x Ax B Ax B      u v v u v1 2     (4.72) 

where v v v 1 2 , thus we have a disturbance to u. 

 

 for an unmatched uncertain system, we have both disturbances to u and to x . However, to determine the 
bound of v2 , we need to know the bound of x, ie. the ranges of x i ni , , , , 1 2  . Eq.(4.69) reveals that 

the bound of v2  depends on the bound of x si '  which are proportional to the reference, for example, 

while it is not the case for a normal disturbance. For example, consider an unmatched uncertain system 

 A B A B











































0 1 0
0 1

0
0

0 0 0
0 0
0 0

0
01

2 3 4 1

1

2 1

a
a a a b

a
a b

, ,  



, 


 





 (4.73) 

then choosing 

 W z











0
1
1

0 1 2,   a a  (4.74) 
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gives, by Eq.(4.69) 

 v a a
x
x
x

x a x a2 1 2

1

2

3

2 1 3 20 









 zx      . .  .   (4.75) 

so 
 v x a x a2 2 1 3 2 . .   (4.76) 

where 
 v v x x x x a a a a2 2 1 1 2 2 1 1 2 2    , , ,  ,       

 

4.7.2.2. Conversion of Uncertain State-Space Model 

 Consider the state-space model 
 x Ax B X AX B I A X B       u s U s U   (4.77) 

then 

 y Y s U G s Y
U

s         Cx CX C I A B C I A B     1 1  (4.78) 

where 

 A B





















0 1 0
0 1

0
01

2 3 4 1





,


a
a a a b

 (4.79) 

thus 

 G s b
s a s a a s a a a

   
    



  
1

3
4

2
3 1 1 4 2

 (4.80) 

so 

 

  

, 


, A B C

 























0 1 0
0 0 1

0
0 1 0 0

2 1 4 3 1 4 1a a a a a a b   
 (4.81) 

 

We will find a transformation T such that 

 x Tx  (4.82) 

then 

    x Ax B  u  (4.83) 

where 
  , A TAT B TB 1  (4.84) 

thus solving the equation 

 




AT TA

B TB









 (4.85) 

to obtain 

 T 










1 0 0
0 1 0

0 11a
 (4.86) 
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Due to uncertainty, a1 is unknown, so is the transformation T, thus it is impossible to transform the 

unmatched uncertain model in Eq.(4.79) by Eq.(4.82) into the matched uncertain system in Eq.(4.81). 

Therefore, the above analysis yields the following proposition 

 

Proposition 4.2: Conversion of Unmatched to Matched Uncertain System 

 In general, it is impossible to find a (constant) transformation from an unmatched to matched uncertain 

system. However, if all system states are inaccessible except the output and an observer is required, then 

there may exist a conversion via transfer function to transform an unmatched to matched uncertain system 

(Example 4.8). 

 

4.8. NUMERICAL EXAMPLES 

 In order to see the elimination of the chattering problem, the discontinuous SMC (VSS) will be 

included. The TanH VSS control will be included to compare with the linear SMC since both are able to 

eliminate the chattering problem, but the former is a pseudo-sliding mode while the latter is a true sliding 

mode. So we sumarize the results as follows 

 

Remark 4.11: Summary of Robust SMC Designs 

 In the numerical examples below, and in this work generally, hyperplane eigenvalues will be chosen at 

the same unique value for simplicity. Different multiple values may be attempted to compromise between the 

response speed and overshoot. 

 Nominal model can be determined using proposition 4.1 in designing a hyperplane (Chapter 2) 

 Sliding margin  is chosen on the basis of Proposition 3.1; 

 New Robust Discontinuous SMC functions are computed by Theorem 4.3 where the switching function 

is given by Eq.(3.5). Saturate, Unitvector and TanH VSS control functions are given by Eqs.(3.6) to 

(3.8), respectively, based on Proposition 3.2; 

 New Robust Linear (Continuous) SMC functions are computed by Corollary 4.5 deduced from 

Theorems 4.6 and 4.7 for a general case under uncertainty and disturbance where a special case without 

perturbation (uncertainty and/or disturbance) will make the corresponding control component(s) vanish; 

 Robust Integral SMC functions are computed by Theorem 4.10; 

 New robust sliding-mode observers are computed by Theorem 4.11 
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4.8.1. Example 4.1: No Perturbation 

 Consider a linear system (Sivaramakrishnan  et al. 1984) 
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4.8.1.1. Original Design 

 From Sivaramakrishnan  et al. 1984, we have the original control function as 
 u x x x x      1 1 2 2 3 3 4 4   

where 
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and 
 s  H x H. , . , . ,     5 155 4 385 1 16   
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Fig. 4.1: Original Switching SMC Control for Linear System in Example 4.1. 

 

4.8.1.2. New Design 
 To compare to the original design, choose   H    6 6 6, , , then 

  H  0 4285 0 3508 0 0800 1 4401. , . , . , .   

thus  K e  0 4260 1 4014 0 1694 1. . .   

and the sliding-eigenvalues 
  S H    6 6 6, ,   
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 TanH SMC (Continuous Pseudo-SMC) 
 Choose ks  20  and   10 , then Theorem 4.3 yields 

  K r  4 2845 3 5084 0 8 14 4014. . . .   
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Fig. 4.2: TanH SMC Control for Linear System without Perturbation in Example 4.1. 

 

 Linear SMC 

 Choose   18 , then Corollary 4.5 yields 
   K r  7 7122 6 3152 1 4400 25 9226. , . , . , .   

thus  K  81382 7 7165 1 6094 24 9226. , . , . , .   

and the system-eigenvalues 
 C     18 6 6 6, , ,   
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Fig. 4.3: Linear SMC for Linear System without Perturbation in Example 4.1. 
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 Performance 

 The performance of the TanH SMC control is comparable to that of the linear SMC. Note that the 

former is a pseudo-sliding mode, whereas the latter is a true sliding mode. Moreover, the latter is a linear 

control so the linear control theory can be applied to obtain more insight such as the closed-loop system 

eigenvalues. 

 The following are modified models to include perturbations where their hyperplane equations, and 

equivalent controls are exactly the same as in the Example 4.1 above, while reaching control is modified for 

a proper reaching dynamics due to the design rule (Proposition 3.1) 

 

4.8.2. Example 4.2: Matched Uncertainties 

 Consider a matched uncertain linear system in Coleman et al. 1994 
    

~ . ~ .x A A x B B     u   

where 

 A A B B
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 Choose   H   2 2 , then 

  H  0 5254 0 5293 0 1333. . .   

thus  K e  0 0 4587 0 2293. .   

due to the matching condition, the sliding-eigenvalues are absolutely unchanged under matched uncertainties 

and equal to the hyperplane-eigenvalues: 
    S S H1 2 2 2       

We have 
  K p  0 0 2 0 1. .   

choose   3 , then Theorem 4.3 yields 
  K r  1 5761 1 5880 0 4. . .   

0.8

1

2

4

Robust Switching SMC Control for Matched Uncertain 3-rd Order System
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Fig. 4.4: Robust SMC Control for Matched Uncertain System in Example 4.2. 
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 TanH  SMC (Continuous Pseudo-SMC) 

 Choose ks  25  
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Fig. 4.5: Robust TanH SMC Control for Matched Uncertain System in Example 4.2. 

 

 Linear  SMC 

 We have 
  K p  2 6268 3 3054 0 9960. . .   

 Choose   5 , then Corollary 4.5 yields 
  K r  2 6268 2 6467 0 6667. . .   

thus  K  5 2536 6 4107 18920. . .   

but the system-eigenvalues always vary with the uncertainties 
     C C1 21 41 2 27 98 169 2 7 77       . . , . .       

0.6

0.8

1

u
tp

u
t

2

4

6

o
n

tr
o

l

Robust Linear SMC for Matched Uncertain 3-rd Order System

 
Fig. 4.6: Robust Linear SMC for Matched Uncertain Dynamical System in Example 4.2. 
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 Performance 

 The performance of the TanH SMC control is comparable to that of the linear SMC. Note that the 

former is a pseudo-sliding mode, whereas the latter is a true sliding mode. Moreover, the latter is a linear 

control so the linear control theory can be applied to obtain more insight such as the closed-loop system 

eigenvalues. 

 

Remark 4.12: Efficiency of Robust Linear SMC Design Rule (Proposition 4.1) 

 Without using Proposition 4.1, we have the following system eigenvalues 
     C C1 21 44 2 20 47 2 2 5       . . ,   

which is less robust than the above eigenvalues using the proposition. Also note that C2  verifies Theorem 

4.6. 

 

4.8.3. Example 4.3: Un-matched Uncertainty 

 Consider an un-matched uncertain linear system in Chen et al. 1989 where disturbance is deferred to the 

next example 
    

~ . ~ .x A A x B B     u   

where 

 A B A B
 




































































0 1 0
4 0 1
8 7 8

0
0

13

0 0 0
2 0 0
5 0 0

0
0

0 3
,

.
, ,

.
         

 Choose   H   5 5 , then 

  H  20 6897 6 8966 0 6897. . .   

thus  K e  41 7241 15 8621 13793. . .   

due to un-matched uncertainties, the sliding-eigenvalues are changed under un-matched uncertainties, but 

they are still Hurwitz: 
     S Sj1 273 4 6     5 1           . ,   
 

 Robust Switching SMC (Discontinuous  SMC) 

 We have 
  K p  25 0 0   

 Choose   2 , then Theorem 4.3 yields 
  K r  413793 13 7931 13793. . .   
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Fig. 4.7: Robust SMC Control for Un-Matched Uncertain System in Example 4.3. 

 

 Robust TanH  SMC  (Continuous  Pseudo-SMC) 
 Choose ks  2  
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Fig. 4.8: Robust TanH SMC Control for Un-Matched Uncertain Dynamical System in Example 4.3. 

 

 Robust Linear   SMC 

 We have 
  K p  99 5862 25 4483 2 4828. . .   

 Choose   10 , then Corollary 4.5 yields 
  K r  206 8966 68 9655 6 8966. . .   
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thus  K  348 2069 110 2759 10 7586. . .   

but the system-eigenvalues always vary with the uncertainties 
     C Cj j1 210 64 4 06 3 53 15 29 4 96 1 03       . . . , . . .       
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Fig. 4.9: Robust Linear SMC for Un-Matched Uncertain System in Example 4.3. 

 

Remark 4.13: Temporary Violation of Sliding Violation 

 There is a region where s  0  and s  0  so s s.  0 , that is the sliding condition s s.   0  is not satisfied 
and s  is getting larger instead of smaller as required. However, the proof of Theorem 4.7 has shown that 

when s  increases to a certain magnitude, the sliding condition is satisfied and thus s  reduces to 0. 

 

 Performance 

 The performance of the TanH SMC control is comparable to that of the linear SMC. Note that the 

former is a pseudo-sliding mode, whereas the latter is a true sliding mode. Moreover, the latter is a linear 

control so the linear control theory can be applied to obtain more insight such as the closed-loop system 

eigenvalues. 

 

4.8.4. Example 4.4: Un-matched Uncertainty and External Disturbance 

 Consider an un-matched uncertain linear system under disturbance in Chen et al. 1989 

   
~ ~ ,x A A x B B W      u v  v  1 

where 

 A B A B W
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with the disturbance is chosen as follows for simulation 
  v t sin 50   
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 All design parameters are the same as in Example 4.3 with an additional disturbance control. 
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 Robust Switching  SMC 

 Eq.(4.7.c) yields K p0 30  
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Fig. 4.10: Robust SMC Control under Unmatched Uncertainties and Disturbances in Example 4.3. 

 

 Robust TanH SMC 

 Choose ks  2  
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Fig. 4.11: Robust TanH SMC Control under Unmatched Uncertainties and Disturbances in Example 4.3. 
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 Robust Linear  SMC 

 Choose  p  0 2. , then Corollary 4.5 yields 

  K d  124 1379 413793 4 1379. . .   

thus  K  472 3448 151 6552 14 8966. . .   

but the system-eigenvalues always vary with the uncertainties 
     C Cj j1 213 74 4 58 314 2183 5 0 51       . . . , . .       
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Fig. 4.12: Robust Linear SMC under Unmatched Uncertainties and Disturbances in Example 4.3. 

 

 Note the violation of the sliding condition (Remark 4.13). 

 

 Performance 

 The performance of the TanH SMC control is comparable to that of the linear SMC one. Note that the 

former is a pseudo-sliding mode, whereas the latter is a true sliding mode. Moreover, the latter is a linear 

control so the linear control theory can be applied to obtain more insight such as the closed-loop system 

eigenvalues. 

 

4.8.5. Example 4.5: Linear SMC for Nonlinear Systems 

 Consider a nonlinear from Zhou et al. 1992 
  .x f g  u   

where 

 f g
 









  











x
x x x tx x

2

1 2 1
2

1 12
0

1sin( )
,             

since any physical system is bounded-input and bounded-output, we can have the following assumption 
 x1 1   
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the above system can be rewritten as 
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x x
x ax bx c u
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2 1 22
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then 

     . . . . ,
,
.

,
.

,
,

.
,

.
x A x B A A x B B A B A B      









 









 









 









u u   

0 1
0 5 0

0
1 5

0 0
1 5 2

0
0 5

  

 Choose   H  2 , then 

 H  2 1,   

thus  K e  0 2 0 8. .   

choose   4 , hence Corollary 4.5 yields 
  K rp  11 7 2.   

so a linear SMC is 
  u   K x K. , ,10 8   
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Fig. 4.13: Linear SMC for Nonlinear System in Example 4.5. 

 

 Note the violation of the sliding condition (Remark 4.13). 

 

4.8.6. Example 4.6: Robust Integral SMC under Uncertainty and Disturbance 

 Consider the following system under uncertainty from Lin et al. 1992 where a disturbance is included to 

illustrate the design 
    

~ , sinx A A x B W     u v v t10 500   
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where 

 A B A W
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4.8.6.1. Original Design 

 Using the linear quadratic optimal control to minimize the perturbation effect, an original control has 

been 
 u x x  1 078 4 8191 2. .   
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Fig. 4.14: Original Control under Uncertainty and Disturbance in Example 4.6. 

 

If a unit step input is used 
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Fig. 4.15: Original Control under Uncertainty and Disturbance with Unit Step Input in Example 4.6: Steady-State Error 
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4.8.6.2. New Robust Integral SMC Design 

 Choose   H  50 , then 

  ~ , ,H  0 5944 0 0234 0 0366. . .   

thus  Ke  0 0 9856 3 1433, . , .   

 Robust Integral SMC (Discontinuous SMC) 

 Choose   3 , , then Theorem 4.10 yields 
  K K Krp r p   8 9105 13505 0 5487. . .   

and k0 5 9439 .    
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Fig. 4.16: Robust Integral SMC Control under Uncertainty and Disturbance with Unit Step Input in 

Example 4.6: No Steady-State Error 

 

 Robust Integral TanH SMC (Continuous Pseudo-SMC), ks  250  
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Fig. 4.17: Robust Integral TanH SMC Control under Uncertainty and Disturbance with Unit Step Input 

in Example 4.6: No Steady-State Error 
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 Robust Integral Linear SMC 

 Choose   400 , , then Theorem 4.10 yields 
   K  237 7556. 9.8353 17.7775, ,   
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Fig. 4.18: Robust Integral Linear SMC under Uncertainty and Disturbance with Unit Step Input in 

Example 4.6: No Steady-State Error 

 

4.8.7. Example  4.7: Robust Sliding-Mode Observer under Un-Matched  

Uncertainties 

 Consider an un-matched uncertain linear system under external disturbance in Example 4.4 above, using 

the observer dynamics 2 times faster than that of the robust linear SMC, , then Theorem 4.11 yields 

 L A A LC
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This observer can be used for both robust discontinuous and continuous sliding-mode controllers in Example 

4.4. To compare with Linear SMC, the TanH SMC Control will be used rather than the Switching SMC 

Control. 

 

Remark 4.14: Performance of Pseudo-SMC 

 In the linear SMC which is a true SMC, the sliding variable s asymptotically goes to zero, but it is never 

equal to zero. Strictly speaking, the linear SMC is also a pseudo-SMC, that is why the performance of linear 

SMC is similar to that of pseudo-SMC such as TanH-SMC in all simulations above. 
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Fig. 4.19: Robust Sliding-Mode Observer for Linear Sliding-Mode Controller in Example 4.7. 
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Fig. 4.20: Robust Sliding-Mode Observer for TanH SMC Controller in Example 4.7. 
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4.8.8. Example  4.8: Robust Sliding-Mode Observer under Converted Matched  

Uncertainties 

 Consider an un-matched uncertain linear system under external disturbance in Example 4.4 above, 

Section 4.7.2.2 converts the unmatched uncertain system into a matched system as 
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For the same maximum control effort, choose hyperplane eigenvalues as  H   6 6 , then 

  H  24 8276 8 2759 0 6897. . .   

thus 
  Ke  34 8276 23 4483 2 7586. . .   

 

 Robust Linear SMC 

 For the same maximum control effort as in Example 4.4, choose   6, then Corollary 4.5 yields 
  Kr  148 9655 49 6552 4 1379. . .   

and choose  p  0 2.  to have 

  K p  761379 23 9310 2 0690. . .   

 

 Robust TanH SMC 

 Theorem 4.3 yields 
  K p pK 21 2 0 360,   

and choose   2 , then 
  Kr  49 6552 16 5517 13793. . .   

 

Choose the observer dynamics 2 times faster than that of the robust linear SMC, then Theorem 4.11 yields 

 L A A LC=
.
.
.

.

.

.

331 4542
840 4938
240 6432

331 4542 1 0
840 4938 0 1
200 6432 3 8

















  


  

















, e   

 This observer can be used for both robust discontinuous and continuous sliding-mode controllers in the 

sequence. 
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Fig. 4.21: Cf. Fig. 4.19, Robust Sliding-Mode Observer for Linear SMC Controller in Example 4.8. 
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Fig. 4.22: Cf. Fig. 4.20, Robust Sliding-Mode Observer for TanH SMC Controller in Example 4.8. 

 

Remark 4.15: Comparison between Unmatched and Converted Matched Uncertainty. 

 Performances of SMC's for converted matched uncertain system are similar to the original unmatched 

ones (Cf. Figs. 4.19 & 4.21, 4.20 & 4.22). 
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4.9. CONCLUSION 

 We have seen that the  sliding eigenvalues are unchanged while the  system eigenvalues are always 

changed under the perturbations. Even though the system eigenvalues vary with the perturbations, under 

matching conditions, the sliding eigenvalues are absolutely unchanged and equal to the hyperplane-

eigenvalues chosen to be Hurwitz previously. Due to the stability criterion (Theorem 3.1),  the system is 

stable regardless how large the perturbations are. Without the matching conditions, if the sliding-eigenvalues 

are still Hurwitz then the system is stable; but they may migrate into the right-half plane (RHP) and then the 

non-Hurwitz sliding-eigenvalues make the system unstable even though the sliding condition is still satisfied 

and the hyperplane is stable! In this case, we must do a stability test (Theorem 3.1). 

 

 We have identified 3 types of eigenvalues to clarify the mechanism of the sliding mode in a SMC with a 

sliding margin of  : hyperplane-eigenvalues, sliding-eigenvalues and system-eigenvalues. The sliding-

eigenvalues represent the sliding dynamics of the system state variables in the sliding mode. The hyperplane-

eigenvalues are the desired sliding-eigenvalues. The first 2 types are applicable for both linear and nonlinear 

systems, the third is only for linear systems. 
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 By the stability criterion (Theorem 3.1) with the design rule (Proposition 3.1), it is simple enough to do 

a stability test. If the sliding-eigenvalues are Hurwitz but its simulation is unstable, then we should reduce 

the sliding margin. 

 

 The unified design in Chapter 3 is extended to deal with perturbations in this chapter. Moreover, there is 

a unified approach to deal with discontinuous or continuous SMC, conventional or integral SMC. From a 

discontinuous control function of the discontinuous SMC, we can get a continuous pseudo-SMC by using 

either a saturated function or a TanH function in exact the same manner. For a linear SMC, it is only pseudo-

SMC for the case of disturbances, but it is not for uncertainties. Also by the simulations, we have seen that 

the performance of the TanH SMC control is comparable to that of the linear SMC. Note that the former is a 

pseudo-sliding mode, the latter is not. Moreover, the latter is a linear control so the linear control theory can 

be applied for a more insight such as the closed-loop system eigenvalues. 

 

 We have also seen that it is possible for a linear control law for a certain class of nonlinear systems. For 

a more general class of nonlinear systems, a nonlinear system is linearized around an operating point, then 

the proposed robust linear SMC is applicable to that linearized system where the nonlinearity is considered 

as a special type of an uncertainty within the bound in that operating range. 

 



Sliding-Mode Control: Advanced Design Techniques 4.46 

 By our new design of linear control function for linear systems under uncertainties, we can use the well-

established linear control theory for assessments and for comparisons in order to have a closer look at the  

true nature of SMC as mentioned so far. In fact, the proposed robust linear SMC can be considered as a 

superset of the linear state-space control. Some other features are the followings: 

  (i) In the systems under no uncertainties, sliding-eigenvalues are equal to hyperplane-eigenvalues. 

Moreover, system-eigenvalues comprise hyperplane-eigenvalues and the negative of the  sliding margin. 

 (ii) Invariance condition really means the sliding-eigenvalues are invariant to matched uncertainties and 

are equal to the hyperplane-eigenvalues, while the system-eigenvalues vary with the uncertainties. The 

Hurwitz sliding-eigenvalues do guarantee the system stability because they are equal to the Hurwitz 

hyperplane-eigenvalues. Moreover, by Theorem 4.5, the negative of the sliding margin and the hyperplane-

eigenvalues are the system-eigenvalues at one boundary of matching uncertainties. 
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Chapter 5 

 
A New Robust Discrete-Time Sliding Mode 

Controller-Observer  Design 
 

5.1. INTRODUCTION 

 In the current discrete-time sliding-mode control (SMC), a convergence condition has been proposed in 

addition to the sliding condition in Sarpturk et al 1987 (Remark 5.1). There have been some comments on 

applicability of this approach in Kotta 1989, and these conditions have been shown to be sufficient but not 

necessary in Spurgeon 1990. In Utkin et al 1989, Furuta 1990, the proposed controls have been pseudo 

sliding mode with a boundary layer using discontinuous switch control function. In the current continuous-

time SMC, a SMC can be obtained using a discontinuous switch control function and a pseudo-SMC is used 

to smooth out the discontinuity of the switch function in solution of the chattering problem. In Su et al. 1993, 

pre-filtering and post-filtering have been implemented to reduce chattering in sliding-mode controllers. In 

Spurgeon 1991 and Pieper et al 1992, robust discrete-time discontinuous pseudo SMC designs have been 

proposed for matched uncertain systems. In Pan et al. 1993, a discrete-time model has been transformed into 

a canonical one then a robust discrete-time SMC has been designed for this transformed canonical model 

under matched uncertainty. In Wang et al. 1994, a robust discrete-time SMC has been designed for a system 

where its transformed model under matched uncertainty. 

 

 In this chapter, a new robust discrete-time sliding mode controller (SMC) and observer design is 

presented for both discontinuous SMC (VSS) and continuous SMC control functions, it can be seen as a 

discrete-time version of the previous chapter. A high sampling rate is proved to be a necessary condition for 

a discrete-time SMC. 

 

 Based on the work in Pieper et al 1992 for matched uncertain systems, an alternative design will be 

presented without the constraint stated therein. On the basis of the new robust sliding mode controller design 

in the previous chapter, a new robust discrete-time sliding mode controller design will be proposed to deal 

with bot matched and unmatched uncertainty without chattering. 

 

 As a SMC is based on a state-space model, an I-action may be required to eliminate a steady-state error. 

We will also prove that the integral VSS control (discontinuous SMC) in Theorem 3.4 can be still applied to 

both robust discontinuous and linear continuous SMC controls in this chapter. Also as a state-space 

approach, SMC requires an observer to estimate unavailable states, we present a new robust discrete-time 

sliding-mode observer design. 
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 As a state vector is necessary for SMC, an observer may be required for estimation of unavailable states. 

In Bondarev et al. 1985, a linear Luenberger observer has been used as an observer of a VSS controller for 

deterministic linear systems (no uncertainties). In Walcott et al. 1987 and Yaz et al. 1993, a Lyapunov 

sliding condition has been used  to design an observer for a class of systems under matched uncertainty 

restricted to a certain system structure. In Slotine et al. 1987, a sliding patch condition has been used to have 

a region of direct attraction where uncertainty is not fully tackled. In fact, in Walcott et al. 1987, Slotine et 

al. 1987 and Yaz et al. 1993, to cope with uncertainty, a Lyapunov sliding condition has been employed to 

include a switching component into a linear Luenberger observer where a linearized model is used for a 

nonlinear system. 

 

5.2. DIGITAL CONTROL SYSTEMS 

 Nowadays, most controllers are implemented as digital controllers rather than analog ones since digital 

controllers are much more flexible and they can be used to implement highly complicated control functions. 

Simple control functions can be implemented with analog controllers, however they are less reliable due to 

the drifting problem of op-amps, the leakage problem of capacitors and the aging problem of analog 

components such as resistors, capacitors etc. 

 

The z-transform (Section 5.2.5) and a discretization of a state-space model (Section 5.2.7) will be used in the 

latter sections on discrete-time SMC. Although these results are well-known in the digital control literature, 

this section still exists due to its presentation on digital control systems in a compact, concise and logical 

manner. We first start with a reality of a sampling process to convert an analog signal into digital signal in 

deriving the starred transform which founds a basis to develop the Z-transform. The Z-transform will then 

define a mapping between the continuous-time s-plane and the discrete-time z-plane as a mathematical tool 

to design a digital controller, as the Laplace transform is used to design an analog controller. 

 

5.2.1. Some Terminologies 

 In this subsection, we are concerned with the difference between discrete-time system and digital system 

while they both are a discretized system of an analog system. In the real world, all signals are analog signals 

whose amplitudes take infinite values within some ranges. Their values can be any real numbers with 

fraction and the difference of successive values is infinitesimal. 

 

Analog signals are continuous-time signals. Discrete-time signals, or discrete signals for short, take finite 

values of any real numbers, hence the difference of successive values is finite and is a real number. 

 

Digital signal is a subset of discrete-time signal. A values of a digital signal must be an integer, thus the 

difference of successive values is finite and is an integer. These integers are within the range determined by 
the length of registers in a ADC, the range is 0 2~ n or    2 2 11 1n n~  for a n-bit ADC. 
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Discrete-time control theory is used to design a discrete-time controller which is employed to implement a 

digital controller for a digital control system. 

 

A continuous-time system is discretized using the discrete-time control theory, there is no digitization of a 

system since it is a special case of discretization as a real number is rounded off to an integer. An analog 

signal is digitized, also known as quantized, by an ADC, there is no discretization of an analog signal since 

there is no such converter available nowadays. 

Digital
Controller

Processyd

ed ud
yue


ADC DAC

Controller

 
Fig. 5.1: Digital Control System 

where y y e ud, , , and  are analog signals while e ud dand  are digital signals. ADC and DAC are analog-to-

digital and digital-to-analog converters, respectively. Digital controller can be either a micro-controller or a 

digital signal processor (DSP) where ADC and DAC are on-chip (internal) or a general purpose computer 

with external ADC/DAC. For 8-bit processors such as 8051 Intel family or 68HC11 Motorola family, ADC 

and DAC are also 8-bit. However, higher bit ADC’s are expensive, 10-bit or 12-bit ADC are usually used for 

16-bit processors such as 80196 Intel family, 68000 Motorola family, 32-bit 486-PC, 64-bit Pentium-PC. 

 

5.2.2. ADC as Physical Sampler 

 Practically, ADC is a zero-order-hold sampler of successive approximation type 

Sampler and
Data Hold

 e t

 E s

 e t

 e t

 E s

 e t
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Amplitude

Time  
Fig. 5.2: Sample and Hold Signal 

 
The sampled and zero hold signal  e t  can be mathematically expressed as 

          e t e kT t kT t k T
k

    




 U U 1  (5.1) 
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where  U t  is the unit step function, that is 
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Using the shifting theorem of Laplace transform gives 
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5.2.3. Starred Transform as Ideal Sampler 

 On the basis of Eq.(5.3), the starred transform is defined as 

    E s e kT e kTs
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then Eq.(5.3) can be written as 
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Eq.(5.4) gives the inverse Laplace transform of  E s*  as 

 e t E s e kT t kT
k

* *          





L 1   (5.6) 

where   t is a Dirac delta function. 
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Fig. 5.3: A Representation of  e t*  
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5.2.4. Sampling Characteristics and Signal Reconstruction 

 This subsection founds a basis for choosing sampling rate and necessity of an analog low-pass filter as 

an anti-aliasing filter before ADC. Sampling characteristics and signal reconstruction is determined by the 

following theorem 

 

Theorem 5.1: Laplace Transform of Sampled Signal 

 An alternative expression for the starred transform is given by 

    E s
T

E s jk s
k

*  




1
  (5.7) 

thus the Laplace transform of a sampled signal is equal to infinite sum of Laplace transform of the Laplace 

transform of its original signal. The s-plane may be divided into a primary strip and complementary strips as 

shown in Fig. 5.4. 

Proof 

 Following the proof in Lockhart et al. 1989, let 
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then Eq.(5.6) can be written as 
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Since  S t is a periodic function   t whose period is T, its Fourrier series is 
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where 
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2  (5.11) 

thus Eq.(5.9) can be read as 
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and its Laplace transform is 
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5.2.4.1. Signal Reconstruction 

 To see the significance of Theorem 5.1, consider the case of frequency response, when s j   Eq.(5.7) 

gives 

     E j
T

E j k s
k

*    




1  (5.13) 

thus the spectrum of sampled signal consists of an infinite number of replicas of the analog signal spectrum 
scaled by the factor 1 T  and the frequency shifted by multiples of  s . 

 
If the sampling time T is low enough such that  max  s 2 , then the sampled spectrum retains the  shape 

of the analog one and the analog signal can be reconstructed from its sampled spectrum within the band 
  s s2 2, . 

 

For signal reconstruction, the sampling rate must satisfy the sampling theorem, also known as Shannon 
Sampling Theorem, state that the sampling frequency  s  must be al least equal twice the value of the 

highest significant frequency in the signal. Since an ideal low-pass reconstruction filter cannot be 

implemented, one rule of thumb is to choose T as one-tenth of the smallest process time constant or the 

desired closed-loop time constant. Another convenient rule suggests sampling at the rate of 6 to 10 times per 

cycle. 

 

Proposition 5.1: Choice of Sampling Time 

In this work, the sampling time is chosen such that s  10 max . With this choice, ignoring the sampling 

effect will introduce a maximum tolerance of  gain about 0.12% and of phase about 30 . 

Proof: 

 We have 
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then Eq.(5.5) gives 
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Since the overall DC gain will be determined at the final design stage, the sampling time will be discarded to 

have 
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Fig. 5.5: Spectrum of Analog and Sampled Signal 

 

5.2.4.2. Aliasing or Folding 

 Eq.(5.7) reveals that if  E s has a pole at p0 , then  E s*  will have poles at  p jn s0    where 

n   0 1 2, , ,  For example, suppose that  E s  has one pair of poles located at  a j s0 6.  , outside the 

primary strip. The sampling will then “fold” this pair back into the primary strip, to the location 
 a j s0 4.  . So  e t*  contains components inside the primary strip that do not occur in  e t . This property 
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applies for poles only, not for zeros, since poles of a transfer function component in Eq.(5.7) will be poles of 

the whole transfer function; however, zeros of a component are not necessarily the zeros of the whole. 

 

An anti-aliasing analog filter is used to solve this problem by filtering out all noise. It is a low-pass filter 

with the cut-off frequency is based on the highest frequency of the analog signal. 

 

5.2.5. Z-Transform 

 On the basis of Eq.(5.4), the Z transform is defined as 

 E z e k e k z k

k

        





Z  (5.14) 

 

where the mapping between the s-plane and the z-plane is defined as 

  z e s
T

zTs  
1 ln  (5.15) 

since comparing Eqs.(5.4) and (5.14) yields 
 E s E z

z eTs
*    


 (5.16) 

 The Laplace transform is used in obtaining a control transfer function for implementing a analog 

controller. We will see that the Z-transform will be employed in obtaining a control difference equation for 

implementing a digital controller. 

 

Two of the most important properties of the Z-transform are the linearity and the real are given below 

 Z Z Zae k be k a e k b e k1 2 1 2              (5.17) 

and 

 Z Ze k n z e kn        (5.18) 

where n is a positive integer.  

 Since by the definition of the Z-transform, we have 
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where m k n  . 

 

5.2.6. Some Typical S-Z Transformations 

 For completeness, this subsection presents a brief derivation of 2 well-known transformations: backward 

difference method and bilinear method. The Z-transform defines the mapping in Eq.(5.15) as the exact 

transformation between the s-plane and the z-plane. This transform should be used to convert a continuous-

time system into a discrete-time one. A direct substituting Eq.(5.15) into a transfer function in s-plane will 

produce an infinite difference equation due to the Taylor expansion of the natural logarithmic function. This 

necessitates an approximate transformation to obtain finite difference equations if the substitution method is 
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used in place of the z-transform. From a single term s, we can have s and 1 s  corresponding to a 

differentiator and an integrator, respectively. 

 y t  y t

t tt0 0 tt T t T

Approximation of Differnetiator as a Chord Approximation of Integrator as an Area

 
Fig. 5.6: Approximate Transformations for Differentiator and Integrator 

 

The backward difference transformation approximates a differentiator as the slope of a chord 

      d
dt

y t
y t y t T

T


 
  

taking Laplace transform gives 

      sY s
Y s e Y s

T

Ts


 

  

so 

 s e
T

z
T

z
Ts

Ts







 


 1 1 1
1

1

 (5.19) 

 



jj



js-plane

z-plane
Exact Transformation

Bilinear Transformation

z-plane
Backward Transformation

 
Fig. 5.7: Stability Regions 

 

The bilinear transformation approximates an integrator as the area of a trapezoidal 

         y d y d T y t T y t
t t T

   . .
0 0 2    
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taking Laplace transform gives 

         1 1
2s

Y s
s

e Y s T e Y s Y sTs Ts      

thus 

 
 
 

1
2

1
1 2

1
1

2
2

1

1s
T e

e
T z

z
z

T s
T s

Ts

Ts







 









  (5.20) 

 

The stability region in the s-plane is the RHP, to find its mapping in the z-plane, substituting the frequency 
contour s j   into Eqs.(5.15), (5.20) and (5.21) produces 

 z e j T   (5.21) 

  z
j T

j T
j T

e Tj


 



   1
1

1
2

1
2

1
1

1
2

1
2

2 21





  , tan  (5.22) 

 
 
   z
T j T
T j T

e j



  2
2

2 21


  , tan  (5.23) 

Thus a stable controller could be unstable under the backward difference transformation. This is a limitation 

of this transformation. 

 

5.2.7. Discretization of Continuous-Time State-Space Equations 

 The z-transform is used to discretize a continuous-time transfer-function model for design a discrete-

time controller in the z-domain. Alternatively, a transfer-function model can be modified by taking into 

account the sampling process, and a continuous-time controller can be designed in the s-plane then 

discretized to obtain a discrete-time controller. To discretize a continuous-time state-space model, from the 

digital control literature, we have the following theorem: 

 

Theorem 5.2: Discretization of State-Space Model 

 Consider the continuous-time state equation and output equation 
      x A x B ut t tc c   (5.24) 

      y Cx Dut t t   (5.25) 

under the assumption of zero-order hold that 
      u ut kT kT t k T   , 1  (5.26) 

then a discrete-time representation of Eq.(5.24) will take the form 
           x A x B uk T T kT T kTd d  1 .  (5.27) 

      y Cx DukT kT kT   (5.28) 

where 
  A A

d
TT e c  (5.29) 

and 

  B BA
d

t
T

cT e dtc










0

 (5.30) 

with T is a constant of sampling time,    A Bd dT and T  are thus constant matrices. 
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Proof 

 Following the proof in Ogata 1987, the Laplace transform of Eq.(5.24) give 
        s s s sc cX x A X B U  0   

        s s sc cI A X x B U  0   

or 
          X I A x I A B Us s s sc c c   

 1 10  (5.31) 

Note that 

  s
sc

c
n

n
n

cI A
A

A I  







1
1

0

0,  (5.32) 

hence its inverse Laplace transform is 

     L  





   1 1

0
0 1s

t
n

ec
c

n

n

tcI A
A A

!
, !  (5.33) 

thus Eq.(5.32) becomes 
      X x B UA As e e sc ct t

c 0  (5.34) 

then its inverse Laplace transform is 

      x x B uA A At e e e dc c ct t
c

t

  0
0

    (5.35) 

This equation gives 

           
 

x x B uA A Ak T e e e dc c ck T k T
c

k T

    


1 01 1

0

1
    (5.36) 

and 

      x x B uA A AkT e e e dc c ckT kT
c

kT

  0
0

    (5.37) 

Multiplying Eq.(5.37) by e cTA  and subtracting from Eqs.(5.26) and (5.36) yields 

         
 

x x B uA A Ak T e kT e e kT dc c cT k T
c

kT

k T

    


1 1
1

    

then 

         x x B uA Ak T e kT e dt kT t k Tc cT t
c

T

  








   1 1

0

,   (5.38) 

Substituting t kT  in Eq.(5.25) gives Eq.(5.28). 

  Q.E.D. 
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5.3. DISCRETE-TIME SLIDING HYPERPLANE DESIGN 

 The sliding-mode control has 2 phases of dynamics: the reaching and the sliding modes. The sliding 

condition forces the system states to reach the hyperplane and keeps them sliding on it. In this section, the 

hyperplane design and the sliding dynamics will be presented. 

 

Proposition 5.2: Discrete-Time Sliding-Mode Controller Design 

 If design parameters such as hyperplane, control function (continuous and discontinuous SMC) are 

available in continuous-time domain, then they can be used for the discretized system to keep the discrete-

time controller parameters as close as the continuous-time counterparts. Otherwise, if they are unavailable in 

case of continuous-time model is unavailable, then the rest of this chapter will be used to design a discrete-

time sliding-mode controller. 

 

A discrete-time sliding-mode observer must be designed since it will be used in a discrete-time observer 

equation to estimate system states. 

Proof: 

 By Theorem 5.2, we have 

 
     
   

x A x B u
y Cx

t t t
t t

c c 







  

then 

 
     
   

x Ax Bu
y Cx

k k k
k k
  







1
  

where A, B are discretizations of A Bc c, , respectively. 

 In this sense, consider 

 
     
   

 
 
      

x A x B u
s Hx

u
Kx

K x K x s

t t t
t t

t
t

t t t

c c

e r

 






 



















 .sign

  

then we have 

 
     
   

 
 
      

x Ax Bu
s Hx

u
Kx

K x K x s

k k k
k k

k
k

k k ke r

  






 





















1

.sign

    

  Q.E.D. 
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5.3.1. Hyperplane Equation 

 The exact transformation in Eq.(5.15) converts a desired continuous-time hyperplane-eigenvalues Pc into 

a discrete-time counterpart P , then Chapter 2 will be used with the discrete-time model  A B,  to design a 

hyperplane for a discrete-time sliding-mode controller. 

 

Continuous-Time Hyperplane Design Discrete-Time Hyperplane Design 

 H A B Pc c c chyper , ,   H A B P hyper , ,  

where 

 P P eT c ; 

 hyper is exactly the same hyperplane design procedure presented in Chapter 2 (Remark 2.8). 

 

5.3.2. Equivalent Control 

 Consider a hyperplane 
 s k k    Hx   

then 
 s k s k s k k k k u k                       1 1H x x H A I x HB. . .   

where 

 H x  1 1n n,         

Assume HB  is invertible, then the equivalent control is defined as 

 u k keq          HB H A I x1 .  (5.39) 

thus 
 s k s k s k u k u keq             1 HB.  (5.40) 

 It is important to note that in the sliding mode 
 s k s k u k u keq           0 0 .  

 

5.3.3. Sliding-Eigenvalues 

 We have the following corollary as a discretization of  sliding-eigenvalues in Theorem 2.2 

Theorem 5.3: Discrete-Time Sliding Eigenvalues 

 Consider a SISO discrete-time state equation 
 x A x Bk k u k  1       

and a hyperplane 
 s k k    H x  

 In the sliding mode 
 u k u k ke e e             K x K HB H A I. , 1   

then the sliding-eigenvalue  S  can be determined by 

         eig eig A BK A B HB H A I    
e S

1 1,   (5.41) 
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Proof:  

 For a reduced order of an n-ordered system, there are only n 1   sliding-eigenvalues  S , so we need to 

prove that the remaining n-th eigenvalue of Eq.(5.41) is zero. By definition of eigenvalues: 
eig M I M      i idet 0 , thus we have to prove that det I A B HB H A I       1 0  or 

equivalently 
    det ~ ~A B HB HA 1 0 .   

where 

 ~A A I    

 Since eigenvalues are invariant under a similarity transformation, we will use the similarity 

transformation as in Utkin et al. 1979. 

 Consider a system after the similarity transformation 
      x A x Bk k u k  1 ~. .   

and a hyperplane 
 s k k    H x.   

where   

 x B A B
0

B
, , ~ , , ,  











 n n n u s1

2
                 =   

and 

        x
x
x

A
A A
A A

A A A x A x








 









          1

2

11 12

21 22

1 1 1 1
21 1

1 1
2, ~

~ ~
~ ~ , ~ ~ ~ , , ~ ,   ,    ,      11 12 22

n n n n   

 We have 

      B HB HA
0

B
H H

0
B

H H
A A
A A

H
0 0

H A H A H A H A











































   











1

2
1 2

2

1

1 2
11 12

21 22
2

1

1 11 2 21 1 12 2 22

~
~ ~
~ ~ ~ ~ , ~ ~   

thus 

   ~ ~
~ ~
~ ~ ~ ~ , ~ ~

~ ~
~ , ~A B HB HA

A A
A A

H
0 0

H A H A H A H A
A A

H H A H H A
 









   









   











 
 

1 11 12

21 22
2

1

1 11 2 21 1 12 2 22

11 12

2
1

1 11 2
1

1 12

 

 By the property of a determinant 

 
A B
C D

A D CA B A

D A BD C D

A B
0 D

A D
 

 






 





. ,

. ,
.

1

1

0

0

   if  

   if  
            

then 

 det det 
 

 , 
A B HB HA

A A

H H A H H A
 

 







 



 
  1 11 12

2
1

1 11 2
1

1 12

0   

 Therefore 
     I A B HB H A I                  1 1 11 0P Pn

H i
n- -  (5.42) 

 Q.E.D. 
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5.4. A ROBUST DISCRETE-TIME DISCONTINUOUS SMC (VSS) DESIGN 

 Based on the work in Pieper et al 1992  for matched uncertain systems, we propose the following 

theorem without the constraint stated therein 

 

Theorem 5.4: Robust Discrete-Time Discontinuous SMC Design under Matched Uncertainty 

 Consider a discrete-time linear system under matched parametric uncertainty (Corollary 4.1) 
 x A x Bk k u k v k   1          (5.43) 

where the disturbance v k  must satisfy the following bound 
 max

i
iv v  (5.44) 

and a hyperplane equation 
 s k k    H x  

where 
 x B A H, , , , ,     n n n n u s1 1   

 To satisfy the discrete-time sliding condition 
 s k s k s k s k    1 12 2        (5.45) 

a control can be determined by 
 u k u k u ke rp        (5.46) 

where 

 equivalent control 
 u k ke e e          K x K HB H A I, 1  (5.46.a) 

 reaching and perturbation control 

 u k k k
s k x s k v x

rp rp rpi
i i

i

n

        
  

  













K x
HB HB

,
sgn , if ,

, else

   1
2

1

0

 (5.46.b) 

with the design parameter   0 can be considered as a sliding margin and determined due to a reasonable 

control effort as in the continuous domain. 

Proof: 

 Let 
 s s k k u u k v kq rp          , ,x x HB  

then from Eqs.(5.40) and (5.46), we have 
 s k s k u k v k urp q    1       HB   

so 
 s k s k u sq   1 2      

thus 
 s k s k u u sq q

2 21 2          

 To satisfy the sliding condition Eq.(5.45),  we may choose 
 u s u v s s u vq rp rp      2 2 1

2HB HB   
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By Eq.(5.46.b), we obtain 

 s v xi
i

n

 

1

2
1

HB    

 If 

 s v xi
i

n

 

1

2
1

HB    

then 

 HB HB HBv v v x si
i

n

   



1

2   

or 
 HB v s 2   

by Eq.(5.46.b), we have 
 K 0r    

so 
 s k s k v v s2 21 2        HB HB   

hence 
 s k s k2 21       

  Q.E.D. 

 

Remark 5.1: Validity of Convergence Condition in Discrete-Time SMC 

 In Sarpturk et al 1987, both sliding and convergence conditions have been proposed as 

 
s k s k s k

s k s k s k

      
      

  

  





1 0

1 0

:

:

 sliding condition

 convergence condition
 (5.47) 

 The sliding condition in Eq.(5.45) can be read 
                      s k s k s k s k s k s k s k s k s k          1 1 0 1 1 02   

or 
 s k s k s k s k s k s k                 1 1 0   

so 

 
s k s k s k

s k s k s k

s k s k s k

s k s k s k

     
     

     
     

  

  





  

  





1 0

1 0

1 0

1 0
or  (5.48) 

 Thus Eq.(5.47) is only part of the discrete-time sliding condition Eq.(5.45) so it may be too conservative 

to be used. 
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5.5. A NEW ROBUST DISCRETE-TIME LINEAR SLIDING MODE CONTROLLER DESIGN 

 In this section, a robust SMC design will be proposed for uncertain linear systems under parametric 

uncertainty and external disturbance. 

 

5.5.1. Robust Discrete-Time Linear SMC under External Disturbance 

 To design a SMC under external disturbance, we have the following theorem 

Theorem 5.5: Robust Discrete-Time Linear SMC Design under External Disturbance 

 Consider a linear system under disturbances 
 x A x B Wk k u k v k v v    1       . . . ,  (5.49) 

with a hyperplane equation 
 s k k    H x.   

where 

 x B W A H, , ; ; ; , ,     n n n n u v s1 1                 

then a robust linear SMC function can be found from 
 u e r p    K x K K K K. ,  (5.50) 

where 

  equivalent control 
 K HB H A Ie     1  (5.50.a) 

  reaching control 
  K HB Hr 

1.  (5.50.b) 

  perturbation control 
  K HB HW Hp p v 1 sup . .  (5.50.c) 

if the following sampling condition is satisfied (Remark 5.2) 
 0 1    p vsup .HW  (5.50.d) 

and if the following disturbance condition is satisfied 

    s k
s v

v
v

v
p

p

p

p


  











sup

sup .
sup .

,
sup .

sup .



 



 

HW
HW

HW

HW1
 (5.51) 

where  , p  are discrete-time sliding margins equivalent to the continuous-time sliding margins  , p . 

Proof 

 From Eqs.(5.49) and (5.50), we have 
 s k s k k k k u k v k        1 1               H x x H A I x HB HW. . . . .   

or 

 
s k s k s k k

s k s k s k

    

    





1

1 1

       
       

 

 

.

.
 

so 
 s k s k s k k s k k2 2 2 21 1 1 2                          . . .  (5.52) 

where 
         p v k v ksup . , .HW HW  (5.53) 
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By the sampling condition in Eq.(5.50.d), we have 
 0 1 1 0          

then we consider the following 2 cases 

 

 If 













k k   
1

, then 

s k   







k 
1

                                      




k 
 

s k s k2 21                                              0                       +                     0                     

 

 If 








k k   



1
, then 

s k   



k 
                                      









k 
1

 

s k s k2 21                                            0                       +                     0                     

 

 So, in the worst case, the discrete-time sliding condition is satisfied if 

  s k  






sup ,







1
  

By Eq.(5.53), we obtain Eq.(5.51). 

   Q.E.D. 

 

5.5.2. Robust Discrete-Time Linear SMC under Parametric Uncertainties 

 In this subsection, a general case of parametric uncertainty is considered first, the cases under no 

uncertainty and under matched uncertainty are the special cases. 

 

5.5.2.1. Matched and Unmatched Parametric Uncertainties 

 We propose the following theorem for  both non-matched and matched uncertain dynamical systems. 

Assumption 5.1: System Constraint on Parametric Variation 

 A system matrix ~B  takes any variation such that the polarity of  HB~  is unchanged, ie. 

    sgn sgnHB HB B B~ ~
     (5.54) 

where 

 ~ ~B B B     
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 Under Assumption 5.1, we propose the following theorem to design a robust linear discrete-time sliding 

mode controller for both matched and unmatched uncertainties. 

Theorem 5.6: Robust Discrete-Time Linear SMC Design under Parametric Uncertainty 

 Consider an uncertain dynamical linear discrete-time system 
              x A x B A A x B Bk k u k k u k      1 ~. ~. ~ . ~ .   (5.55) 

with a hyperplane 
 s k k    H x.   

where 
    

~ , ~A A B B            

with 
 x A A B B H       n n n n n u s1 1 1, , , , , , ,                       

then, under Assumption 5.1, a robust discrete-time linear sliding mode control function can be determined by 
 u k k e r p       K x K K K K. ,  (5.56) 

where 

  equivalent control 
    K HB H A Ie  1  (5.56.a) 

  reaching control 
  K HB Hr 

1
.  (5.56.b) 

  perturbation control 

 
 

 K
H A B K K

HB
HBp

e r


 
















 

inf ~ sgn  (5.56.c) 

if the following sampling condition is satisfied (Remark 5.2) 

  1 1
2

  










sup
inf

max
.

HB
HB i

i

ih
  (5.57) 

where 
     i i col ei riK K  H A B. .  (5.57.a) 

 K K K Me r p
n

ijm, , , 1      ,          p q p qij ij ij ij  .  

Proof 

 To keep equivalent and reaching controls similar to the case without uncertainty, we will prove a 

perturbation control in Eq.(5.57.c) based on Eqs.(5.57.a) and (5.57.b). 

 Let 
 K K Ker e r   

by Eq.(5.57), we have 
                      s k s k k k k u k k u k          1 1H x x H A I x B H A I x HB. . ~ . ~. ~ . ~.   

                    s k s k k k k k ker p er p         1 H A I x HB K K x H A I x HB K x HB K x. . . ~ . ~. . ~. .   

                s k s k k k k k ker er p       1 H A I x HB K x H A x H B K x HB K x. . . . ~. . ~. . ~. .   
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              s k s k k k ke e r p er       1 HBK x HB K K x HB K H B K H A x. . . ~. . ~. . ~ .    

          s k s k k kr p er      1 HB K x HB K H B K H A x. . ~. . ~. . ~ .    

or 
          s k s k s k kp er      1 . . . . . .HB K H B K H A x    

so 
                  s k s k s k k s k s k s k k         1 1 2 R x R x,   

where 
    R HB K H B K H A  

~ . ~ . ~
p er   (5.58) 

thus 
                s k s k s k k s k k2 21 2       R x R x   

                     s k s k s k s k k k k2 2 21 2 2             R x R x R x.   

                    s k s k s k s k k k k2 2 21 2 2 1          R x R x R x.   

                 s k s k s k s k k k2 2 21 2 2 1          R x R x   

                 s k s k s k k k k2 2 21 2 2 1          H x R x R x   

or 
               s k s k s k k kT T T2 2 21 2 2 1         x H R R x   

 To satisfy the sliding condition 
 s k s k s k s k s k s k        1 1 1 02 2 2 2              

we choose 
       x H R R R xT T Tk k2 1 0     

For a symmetric matrix, it can be shown that 
         Eig H R R R H R R R 01

2
1
22 1 2 1         T T T T T

,  (5.59) 

where 

        

1

2
1

R H R R H RT T
i

i

n
T T    (5.60) 

and 
    2 1  (5.61) 

so a necessary condition for a positive-definite matrix is 

  h r ri i i
i

n

 

  

1

0  (5.62) 

we may choose 
  h r r i ni i i    0 1, , ,  (5.63) 

 We will prove that 
     2 1 0  (5.64) 

 
(a) If hi  0, then from Eq.(5.63) we have 

   (5.65) 
      0    HB H B H A~ ~ ~K K hpi eri i col i     
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           H A H B HB H A H B   
~ ~ ~ ~ ~

i col eri pi i i col eriK K h K       

 

 If HB~  0 , then 
         H A H B HB H A H B   

~ ~ ~ ~ ~
i col eri pi i i col eriK K h K       

by Eq.(5.57.a), we have 

 
 i

pi
i iK

h

inf ~ sup ~HB HB
 


 (5.66) 

Assume that 

 
 hi i i


 

sup ~ inf ~HB HB
 (5.67) 

   h h
hi i i i i

i

i

    












   













  

sup ~

inf ~
sup ~

inf ~
sup ~

inf ~
HB

HB

HB

HB

HB

HB
1 1   

   












max

sup ~

inf ~i

i

ih


1
HB

HB
  

thus we obtain the condition in Eq.(5.57). By Eq.(5.57) and hence Eq.(5.67), we can choose 

    K hpi
i i

i 
 

inf ~ inf ~ sgn sgn
HB HB

HB  (5.68.a) 

under Assumption 5.1. 

 

 If HB~  0 , then 
          H A H B HB H A H B   

~ ~ ~ ~ ~
i col eri pi i i col eriK K h K        

then under Assumption 5.1, we have  

        

inf ~ sup ~ inf ~ inf ~ sgn sgn
HB HB HB HB

HB  


   K
h

K hpi
i

pi i


 (5.68.b) 

since Eq.(5.57) can be read as 

 
 hi i i


 

sup ~ inf ~HB HB
  

 
(b) If hi  0, then    h ri i 0  

From Eq.(5.58), we have 
                 h K K Ki i col eri pi i col eriH A H B HB H A H B   

~ ~ ~ ~ ~   

 

 If HB~  0 , then we have 
               h K K Ki i col eri pi i col eriH A H B HB H A H B   

~ ~ ~ ~ ~   

by the condition Eq.(5.57), under Assumption 5.1, we have 
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 h

K K hi
pi pi i

   

sup ~ inf ~ inf ~ inf ~ sgn sgn
HB HB HB HB

HB  (5.68.c) 

 If HB~  0 , then 
                 h K K Ki i col eri pi i col eriH A H B HB H A H B   

~ ~ ~ ~ ~   

by the condition Eq.(5.57), under Assumption 5.1, we have 

  
 

   
 

  


  
 h

K K hi
pi pi i

   

sup ~ inf ~ inf ~ inf ~ sgn sgn
HB HB HB HB

HB  (5.68.d) 

   Q.E.D. 

 

Remark 5.2: Sampling Condition in Discrete-Time SMC 

 The conditions in Eqs.(5.50.d) and (5.57) are sampling conditions because they depend on H, W and B 

which in turn depend on the sampling rate. 

 The sampling conditions may be too complicated to check, in particular Eq.(5.57). The implication is a 

faster sampling rate may be chosen for a lager uncertainty. 

 

5.5.2.2. No Uncertainty 

 Under no uncertainties, we have the following corollary to design a linear discrete-time sliding mode 

controller 

Corollary 5.1: Robust Discrete-Time Linear SMC Design under No Perturbation 

 A linear discrete-time sliding mode controller for a deterministic dynamical system can be determined by 
 u k k ke r           K x K K x. .  (5.69) 

where 

  equivalent control 
    K HB H A Ie  1  (5.69.a) 

  reaching control 
  K HB Hr 

1.  (5.69.b) 

and the sampling condition in Eq.(5.57) reduces to 
  1 0   (5.70) 

with   x B A H, , , , ,     n n n n u s1 1                 

Proof 

 If there is no uncertainty, we have 
 ~ , ~ , ,A A B B A 0 B 0       

then by Eq.(5.56.c), the perturbation control vanishes. 

  Q.E.D. 
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 To design a linear discrete-time sliding mode controller, we must choose . To do so, we propose the 

following theorem. 

Theorem 5.7: Closed-Loop Eigenvalues composed of Hyperplane Eigenvalues and Sliding Margin 

 If a system has a discrete-time sliding margin  and a hyperplane-eigenvalue 
 S   eig A B HB HA  1 , then the eigenvalues of the closed loop can be determined by 

   C H
n   1 1,  (5.71) 

Proof:  

 By definition of eigenvalues : eig M I M      i idet 0 , from Eq.(5.69) 

          A BK A B HB H A I H A B HB H A I         1 1 1 . .  

  To prove  1   is one of the eigenvalues, we have to prove 

            det det1 0 1 01         . . .I A BK HB BH I A I  (5.72) 

 By the properties of a determinant 
 P Q P Q Q P P Q. . . , ,        n n   

and 
 I P Q I Q P P Qn m

n m m n     . . , ,      

then Eq.(5.72) is satisfied since 
 HB BH I HB HB I       1 1 0   

 Thus we can write 
              I A B HB H A I HB H         1 1 11 P * n  (5.73) 

Eq.(5.73) holds for all  , so it must hold for   0 , then Eq.(5.73) becomes 

   I A B HB H A I             1 11 P * n  (5.74) 

compared to Eq.(5.42), we have 
 P P*  n n 1 1     (5.75) 

this proves that  H  are the remaining eigenvalues. Q.E.D 

 

Remark 5.3: Sampling Condition equivalent to Stability Criterion with Unit Circle 

 Since  1   is a closed loop eigenvalue, to stabilize the system we must choose within the unit circle 

 1 1   (5.76) 

hence the sampling condition in Eq.(5.70) is consistent with this condition. So the condition Eq.(5.70) is also 

the condition of stability. In terms of a continuous-time sliding margin , we have the following relationship 

    1 e T  (5.77) 

 The sampling condition Eq.(5.57) and hence Eq.(5.70) can be relaxed with a fast sampling rate, i.e. the 

faster sampling rate is the easier this sampling condition satisfies. 
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5.5.2.3. Matched Uncertainty 

 To determine the performance of a robust control design, we propose the following theorem 

Theorem 5.8: Robust Discrete-Time Linear SMC Design under Matched Uncertainty 

 Consider an uncertain dynamical linear discrete-time system 
           x A x B A A x B A Ak k u k k u k      1 ~. ~. ~ . . , ~

    

with a hyperplane 
s k k    H x.  

where 
    

~ , ~A A B B    

 If A  satisfies the matching uncertainties condition then the system-eigenvalues at the upper boundary 
   C B H, , 1   (5.78) 

where 
  

 x B A A H. , , , , , , ,( )         n n n n
H

n u s1 1
1

1 1
1                             

with 
              

( ) ,1
1 1

1
n 

      : unit circle 

Proof 

 From Eq.(5.56.c) with B 0  

 
 

     K
H A B K

HB
HB H A

HB
HB HB H Ap

er



    


.

inf ~ sgn . sgn .1  (5.79) 

 Since all the elements of A  are positive constant, from the matching uncertainties condition 
 A B v v  . ,      1 n  

so Eq.(5.79) becomes 
  K HB H B v vp  1 . .  

Thus the system-eigenvalues at the upper boundary, ~A A A   , are 
            C e r p e r e r2               eig eig eig eig2A B K A A B K K K A B v B K K v A B K K. . . . .  

 Recall that, under no perturbation we have 
    eig .A B K  er H1 ,   

so 
      C e r H2 1    eig A B K K. ,  

  Q.E.D. 

 

 Theorem 5.8 has shown that system eigenvalues of an uncertain dynamical system at upper boundary 
 A A   are equal to those of a deterministic dynamical system. We propose the following design rule to 

move these eigenvalues inside the bounds by shifting down the nominal values of the system matrix. 
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Proposition 5.3: Robust Discrete-Time Linear SMC Design Rule 

 Theorem 5.8 is valid for matched uncertain systems and H has all element the same polarity. In general, 

choosing the nominal system matrices as 
 A A A B B B   1

2
1
2 ,   

in designing a hyperplane may produce a more robust controller. 

 

5.5.3. Robust Discrete-Time Linear SMC under Uncertainties and Disturbances 

 From Theorem 5.4 and 5.5, we have the following corollary to design a robust SMC for systems under 

uncertainty and disturbance. 

Corollary 5.2: Robust Discrete-Time Linear SMC Design under Uncertainty and Disturbance 

 Consider a discrete-time system under uncertainty and disturbances 
                    x A x B W A A x B B Wk k u k v k k u k v k v k v         1 ~. ~. . ~ ~ . . ,   (5.80) 

with a hyperplane 
 s k k    H x.   

where 
    

~ , ~A A B B            

with 
 x A A B B H       n n n n n u s1 1 1, , , , , , ,                       

then, under Assumption 5.1, a robust discrete-time linear sliding mode control function can be determined by 
 u k k e r p       K x K K K K. ,  (5.81) 

where 

  equivalent control 
    K HB H A Ie  1  (5.81.a) 

  reaching control 
  K HB Hr

Te   1 1  . ,  (5.81.b) 

  perturbation control 
 K K Kp u d   (5.81.c) 

  * uncertainty control 

 
 

 K
H A B K K

HB
HBu

e r


 
















 

inf ~ sgn  (5.81.d) 

  * disturbance control 
  K HB HW Hd v

1
sup . .  (5.81.e) 

if the following sampling conditions is satisfied 

     1 1
2

  








  

sup
inf

max
.

, .HB
HB

H A B
i

i

i
i i col erih

K
    (5.81.f) 

and 
 0 1    p vsup .HW  (5.81.g) 
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and if the following disturbance condition is satisfied 

    s k
v

v
v

v
p

p

p

p


  











sup

sup .
sup .

,
sup .

sup .



 



 

HW
HW

HW

HW1
 (5.81.h) 

Proof 

 Eqs(5.81.a), (5.81.b) and (5.81.d) can be determined using Theorem 5.5. Since the uncertainty control 

can tackle uncertainty, Eq.(5.80) can be read as 
        x A x B Wk k u k v k   1 . . .  (5.82) 

the Eq.(5.81.e) can be determined by Eq.(5.82) using Theorem 5.4. 

  Q.E.D. 

 Based on the results on the robust VSS controller design Eq.(4.7) in Chapter and on the results on the 

robust discrete-time linear SMC Eq.(5.80) above, we have the following proposition for the robust discrete-

time VSS controller design 

Proposition 5.4: Robust Discrete-Time VSS Controller Design under Uncertainty and Disturbance 

 For a linear system under perturbations (uncertainties and disturbances) 
                    x A x B W A A x B B Wk k u k v k k u k v k v k v         1 ~. ~. . ~ ~ . . ,    

and a hyperplane 
 s k k    H x.   

with 
    

~ , ~ ,A A B B            v v   

then, under Assumption 4.1, there exists a constant   0 for a  VSS control function to be determined as 
 u u u ue r p    (5.83) 

where 

  equivalent control 
    K HB H A Ie  1  (5.83.a) 

  reaching control 
    u s er r r

T     HB K x K H1 1. . , . ,sgn     (5.83.b) 

  perturbations control 

    
   

 u K s K
v

xp p p p p i     0 0K x
H W

HB HB
K

H A

HB HB
x. . ,

.

inf ~ .sgn
,

.

inf ~ .sgn
,sgn      


 

  (5.83.c) 

with 
 x B B W A A H, , , , , , , , , ,       


n n n n u s v1 1                         
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5.6. A ROBUST INTEGRAL DISCRETE-TIME LINEAR SMC DESIGN 

 A SMC is based on a state-space model, an I-action may be required to eliminate a steady-state error. 

We have the following corollary to design a robust integral discrete-time SMC using Theorem 5.5. 

 

Theorem 5.9: Robust Discrete-Time Linear SMC Design under Uncertainty 

 Consider an uncertain dynamical linear system system 

 
             

   

x A x B A A x B B A A B B

C x

k k u k k u k

y k k

        









1 ~. ~. ~ . ~ . , ~ , ~

.

     
  

and its augmented-order system with a reference input of r 
      x A x Bi i i ik k u k  1 ~ . ~ .  (5.84) 

where 

 ~ ~
~ , ~ ~

~A CA
0 A

B CB
Bi

n
i


























1

1

 (5.84.a) 

then a robust integral discrete-time SMC with a hyperplane ~H  can be determined by 
      u k u k u ki *

~  (5.85) 

where 
       u k h r h hi i i i i i n* , , ,, 


H B H1

1 1 1  (5.85.a) 

and  
  u ki  is a robust SMC  for Eq.(5.84) and can be determined by Theorem 5.5.  

with 
 x B A C, , , , ,  , , ,*     n n n n u u u y r1 1               :  sliding margin.  

Proof 

 With an input reference of r, define an integral as 

    x t y r dt
t

0
0

    

then its discretization is 

 x z
y z r z

z
z x z y z r z0 1

1
0

1
1             




   



 .   

or 
 x k x k y k r k0 01 1 1               

thus 
                     x k x k k r k k u k r k k u k r k0 01 1 1 1 1             C x C A x B CA x CB. . ~. ~. ~. ~.   

or 
          x k x k k u k r k0 01 1     CA x CB~. ~.   

so we obtain the following augmented system 

  
 
 

 
 

   x
x

CA
0 A x

CB
B 0i

n

k
x k

k
x k

k
u k r k 












 





















 






















 



1
1
1

1 1
10

1

0
~

~ .
~

~ . .  
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from Eq.(5.84.a), we have 

    
~ . ~ . . ~ .~ ~ . .x A x B

0
A A x B B

0i i i i
n

i i i i
n

u r u r  








     











 

1 1

1 1
   (5.86) 

where 
 r r k 1    

since the uncertainty component of u can tackle any uncertainty ~Bi , Eq.(5.85) is still hold for ~B 0i   so 

it can be read as 

  
~ .~ . . ~ .~ . .x A A x B

0
A x B

0i i i i
n

i i
n

u r u r   








   











 


1 1

1 1
 (5.86.a) 

thus 

        s k k k u k r u h ri i i i i i i i
n

i i i i i     








   



1 1
1

1
1H x H A x H B H

0
H A x H B. ~ .~ . . . . ~ ~

,  

by Eq.(5.85.a), we have 
            s k k u k u k k u ki i i i i i i i i i i i i i     1 H A x H B H B H A x H B~ . . . ~ . . ~

*  

or 
       ~ ~ . . ~s k k u ki i i i i i  1 H A x B  (5.87) 

since ~ui  is a robust SMC for Eq.(5.84), the sliding condition    ~ ~s k s ki i
2 21 0    is satisfied using 

Eq.(5.87) 

  Q.E.D. 

 

5.7. A NEW ROBUST DISCRETE-TIME LINEAR SLIDING-MODE OBSERVER DESIGN 

 As in the state-space observer design where the estimator response is 3 to 10 faster than that of the 

controller response, to design a robust observer, we propose the following theorem 

Theorem 5.10: Robust Discrete-Time Linear Sliding-Mode Observer Design under Uncertainty 

 Consider a system state equation 

 
             

       

x A x B A A x B B

y C x C C x

k k u k k u k

k k k

      

  









1 ~. ~. ~ . ~ .
~ ~

:

 

  available output
 (5.88) 

where 
    

~ , ~A A B B            

with 
 x y A A B B C C H           n p n n n p n n u s1 1 1 1, , , , , , , , , ,                                  

if the system is observable, then a robust SMO can be found from 
                 .  

~
x Ax B L y y , y C. xk k u k k k k k     1  (5.89) 

where 
 L L L L  e r p  (5.90) 

with 
    L A I H CHe o o 

/ / 1
 (5.91.a) 

    L H CHr o o o o
T

oe o    
    / / , , ..

1
1 3 10  (5.91.b) 
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L H
A L L C H

H C H C
p o

e r o

o o

 
 

sgn
. .

inf
~

.sgn

/ /

/ /

 
 (5.91.c) 

 Ho  is determined by the eigenvalue allocation with the observer hyperplane-eigenvalues 

     Ho Hc o Ho
   3 10.. hyper , ,/ /H A C    

Proof 

 Since L will be determined under uncertainty, Eq.(5.89) can be perturbed to read as 
               

~


~ . x A A x B B L y yk k u k k k      1     

then an error equation e x xk k k    1 1 1       can be determined by 

                        e x x A x B LC x x A x B A LC ek k k k u k k k k u k k            1 1 1
~.  ~.

~


~. ~. ~ ~ ~
.   

  (5.92) 

To determine L, we will find a function v to nullify the error by the following equation 
      e A e Ck k v k  1 ~ ~/ /  (5.93) 

By Theorem 5.5, we can find v k k    L e/  (5.94) 

where  L/  is determined by Eqs.(5.93), so Eq.(5.92) can be read 

          e A e C L e A LC ek k k k    1 ~ ~ ~ ~ ~/ / /
/

 (5.95) 

we have the following mapping to complete the proof 
 ~ ~ , ~ ~

, ,/ / /A A B C H H K L   o  (5.96) 

so Eqs.(5.90) have been proved. 

  Q.E.D. 

 

5.8. NUMERICAL EXAMPLES 

 Some original designs from the literature will be used to compare with the proposed design. Sliding 

parameters are the same as in the previous chapter, if available; however, reaching parameters may be 

changed, if necessary, to conform with the sliding-mode design rule. 

 

Remark 5.4: Summary of Robust Discrete SMC Designs 

 In the numerical examples below, and in this work generally, hyperplane eigenvalues will be chosen at 

the same unique value for simplicity. Different multiple values may be attempted to compromise between the 

response speed and overshoot. 

 If continuous-time sliding-mode controllers (continuous and discontinuous SMC) are available, then 

Proposition 5.2 can be used to obtain discrete-time sliding-mode controllers. However, discrete-time 

sliding-mode observers must be designed in discrete-time domain; 

 Nominal model can be determined using proposition 5.3 in designing a hyperplane (Chapter 2) 

 A sampling rate can be chosen on the basis of  Proposition 5.1 and Remark 5.2; 
 Sliding margin  is chosen on the basis of Proposition 3.1, and the mapping is    1 e T ; 

 New Robust Discrete-Time Discontinuous SMC functions are computed by Theorem 5.4 or Proposition 

5.4 where the latter is a discretization of Theorem 4.3; 
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 New Robust Discrete-Time Linear (Continuous) SMC functions are computed by Corollary 5.2 deduced 

from Theorems 5.5 and 5.6 for a general case under uncertainty and disturbance where a special case 

without perturbation (uncertainty and/or disturbance) will make the corresponding control component(s) 

vanish; 

 Robust Discrete-Time Integral SMC functions are computed by Theorem 5.9; 

 New discrete-time robust sliding-mode observers are computed by Theorem 5.10 

 

5.8.1 Example 5.1: No Uncertainty 

 Consider a SISO discrete-time state equation in Furuta 1990 

 A B









 









 

  0.9953,     0.0905
0.0905,     0.8144

0.0047
0.0905

, , . secTs 0 1   

 

5.8.1.1. Original Design 

 The original control function is proposed in Furuta1990 as 
 u k ke r e        K K x K, ,1 1   

where 
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Fig. 5.8: Original Discrete SMC Design in Example 5.1 
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5.8.1.2. New Design 

 Choose hyperplane-eigenvalues as 
 p1 0 8 8 4899 10 6127   . ,H . .   

 Linear SMC 

 Choose the reaching dynamics 1.5 times faster than the sliding dynamics, then Corollary 5.2 yields 
 u k k     K x K. , ,0 0772 0 1161. .   
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Fig. 5.9: New Discrete Linear SMC Design in Example 5.1 

 

 Discontinuous SMC 

 Choose   0 4. , then Theorem 5.4 yields 
  K r  0 4 0 4. .   
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Fig. 5.10: Discrete Discontinuous SMC in Example 5.1 
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5.8.2. Example 5.2: Matched Uncertainty 

 Consider the following system from Sarpturk et al. 1987 
 x A x Bk k u k p k   1       . .   

where 

    A B









 









 

1 0.05
0.055 1.2

,
.

, sin .
0

0 055
0 1p k k   

 Note that this form of perturbation has also appeared in Spurgeon 1992. 

 

5.8.2.1. Original Design 

 The proposed control function from the original design is 
 u k x k x k        1 1 2 2   

with 

  1

1

1
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2
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and the hyperplane is 
 s k k    H x H. , ,20 1   
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Fig. 5.11: Original Robust Discrete Switching SMC Design under Matched Uncertainty in Example 5.2. 

 

5.8.2.2. New Design 

 Choose   H  3 , then 

  H  50.65 18.18   

thus 
   K e  1 4 4885.   
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 Robust Linear SMC 

 Choose   9 50and p , then Corollary 5.2 yields 

  K  10 6703 16 9391. .   
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Fig. 5.12: Robust Linear SMC under Matched Uncertainty in Example 5.2. 

 

 Robust Discontinuous SMC 

 Choose   3 , then Theorem 5.4 yields 
  K r  3 3   
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Fig. 5.13: Robust Discrete Discontinuous SMC under Matched Uncertainty in Example 5.2 

 

5.8.3. Example 5.3: Integral Discrete-Time SMC 

 Consider a SISO discrete-time state equation in Chan 1991 

 A B










 









   

. , .
. , .

.
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0 99532116 0 0904837418
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0 00467884016
0 090904837418

0 1, , . secTs   
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5.8.3.1. Original Design 

 The original control function is proposed in Chan 1991 as 
 u k s k ke r e               0 0 8 0 9958 0 0477K K x K, , ,. .   

where 
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Fig. 5.14: Original Discrete Integral SMC Design for Servo-System in Example 5.3. 

 

5.8.3.2. New Design 
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Fig. 5.15: Discrete Integral SMC for Servo-System in Example 5.2. 
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 Choose  H   3 5 3 5. .  for the augmented system defined by Eq.(5.84), then 

  Hi  9 8592 50 4187 7 9119. . .   

and the reaching dynamics 5 times faster than the sliding dynamics, then Theorem 5.9 yields 

    
  

u k h r
x k r

i i i i i    













, , ,1

17 9229 50 2498 10 4972K x K x
x

. . .   

 

5.8.4. Example 5.4: Deterministic System 

 Consider a linear 4-th order system (Sivaramakrishnan  et al. 1984) as in Example 4.1 

  ,x A x B A B  




  







































c c c cu

0.0500,       6.0000,                 0,                  0
           0,    3.3330,        3.3330,                  0

5.2080,                 0,   12.5000,   12.5000
  0.6000,                0,                  0,                 0

,           

     0
     0
12.5000
     0

  

Choose   H    6 6 6, , , then 

  H = . . . .0 4285 0 3508 0 0800 1 4401   

thus  K e  0 4260 1 4014 0 1694 1 0000. . . .   

and the sliding-eigenvalues are unchanged 
   S ,  ,     6 6 6   

and choose the sampling time as 
 Ts  0 01. sec   

since it is about 17 times faster than the desired dynamics  H , so the corresponding discrete-time system is 

      x A x B A Bk k u k   
 
  







































1

0 9995 0 0590 0 0009 0
0 0008 0 9672 0 0308 0 0020
0 0493 0 0015 0 8825 0 1175

0 0060 0 0002 0 1

0
0 0020
0 1175

0

, ,
.
.

  

. . .
. . . .
. . . .

. .

  

 

Remark 5.5: Comparison of Continuous and Discrete Hyperplane 

 Using the above discrete model to design a hyperplane, we obtain 
  ~H  42 3857 34 7105 7 9120 142 4628. . . .   

this discrete hyperplane differs by the above continuous one only by a scale factor of 100, so they are 

essentially the same (Section 2.5). 

 

 Discrete Linear SMC 

 Based on the robust practical design rule, choose   18 , then Corollary 5.2 yields 
  K r  7 7122 6 3152 1 4400 25 9226. , . , . , .   

thus  K  81382 7 7165 16094 24 9226. , . , . , .   

and closed-loop system-eigenvalues are 
   C     6 6 6 18, , ,   
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Fig. 5.16: Discrete Linear SMC for 4-th Order System in Example 5.4. 

 

 Discrete Switching SMC 

 Choose   10 , then Proposition 5.4 yields 
  K r  4 2845 3 5084 0 8 14 4014. . . .   
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Fig. 5.17: Discrete Switching SMC for 4-th Order System in Example 5.4 

 

 Discrete TanH SMC 
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Fig. 5.18: Discrete TanH SMC for 4-th Order System in Example 5.4 

 

5.8.5. Example 5.5: Matched Uncertain System 

 Consider a matched uncertain linear system in Coleman et al. 1994 as in Example 4.2 
    

~ . ~ .x A A x B B   c c c c u    

where 

 A A B Bc c c c
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 Choose   H   2 2 , then 

  H  0 5254 0 5293 0 1333. . .   

thus  K e  0 0 4587 0 2293. .   

 Choose the sampling time as 
 Ts  0 01. sec   

since it is about 50 times faster than the desired dynamics   H , then 

          
~ . ~ .x A A x B Bk k u k    1     

where 
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 Robust Discrete Linear SMC 

 We have 
  K p  2 6268 3 3054 0 9960. . .   
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Choose   5 , then Corollary 5.2 yields 
  K r  2 6268 2 6467 0 6667. . .  

thus  K  5 2536 6 4107 18920. . .   
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Fig. 5.19:  Robust Discrete Linear SMC under Matched Uncertain 3-rd Order System in Example 5.5. 

 

 Robust Discrete Switching SMC 

 We have 
  K p  0 0 2 0 1. .   

choose   5 , then Proposition 5.4 yields 
  K r  2 6667 2 6667 0 6667. . .   
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Fig. 5.20:  Robust Discrete Switching SMC under Matched Uncertain 3-rd Order System in Example 5.5. 
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 Robust Discrete TanH SMC 
 Choose ks  40  
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Fig. 5.21:  Robust Discrete TanH SMC under Matched Uncertain 3-rd Order System in Example 5.5. 

 

5.8.6. Example 5.6: Un-Matched Uncertain System Under Disturbance 

 Consider an un-matched uncertain linear system under disturbance in Chen et al. 1989 as in Example 4.4 

   
~ ~ ,x A A x B B W      u v  v  1 

where 

 A B A B W
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with the disturbance is chosen as follows for simulation 
  v t sin 50   

 Choose   H   5 5 , then 

  H  20 6897 6 8966 0 6897. . .   

thus  K e  41 7241 15 8621 13793. . .   

 Choose the sampling time as 
 Ts  0 01. sec   

since it is about 50 times faster than the desired dynamics   H , then 

 A B A B W






















































































1 0 01 0
0 0404 1 0 0096
0 0755 0 0669 0 9228

0
0 0001
0 0125

0 0001 0 0
0 0202 0 0001 0
0 0474 0 0002 0

0
0

0 0029

0 01
0 0002
0 0004

.
, , , ,

.
. .
. . .

   .
.

.

. .

. .
  

.
.
.

    

 



5. Discrete-Time Robust Sliding Mode Controller-Observer  Design 5.41 

 Robust Discrete Linear SMC 

 We have 
  K p  99 5862 25 4483 2 4828. . .   

Choose   10 0 2and .p , then Corollary 5.2 yields 

  K r  206 8966 68 9655 6 8966. . .   

and  K d  124 1379 413793 4 1379. . .   

thus  K  472 3448 151 6552 14 8966. . .   
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Fig. 5.22: Robust Discrete Linear SMC under Un-Matched Uncertainty and Disturbance in Example 5.6. 

 

Remark 5.6: Temporary Violation of Discrete Sliding Condition 

 The discrete sliding condition is violated in the region where    s k s k 1 . The proof of Theorem 5.6 

has shown that  when  s k  increases up to a certain magnitude then the condition is satisfied and thus  s k  

reduces to zero. 

 

 Robust Discrete Switching SMC 

 We have 
  K p  25 0307 0 1247 0 0004. . .   

and ko = .29 9396   

choose   2 , then Proposition 5.4 yields 
  K r  45 2387 15 0796 1 5079. . .   
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Fig. 5.23: Robust Discrete Switching SMC under Un-Matched Uncertainty and Disturbance in Example 5.6. 
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Fig. 5.24: Robust Discrete TanH SMC under Un-Matched Uncertainty and Disturbance in Example 5.6. 

 

5.8.7. Example 5.7: Robust Sliding-Mode Observer under Un-Matched Uncertainty 

and Disturbance 

 The controller parameters as in Example 5.6 above, choose the discrete-time sliding-mode observer 

dynamics 2 times faster than the linear SMC dynamics, then Theorem 5.10 yields 
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Fig. 5.25: Robust Discrete Sliding-Mode Observer for Linear SMC under Un-Matched Uncertainty and 

Disturbance in Example 5.7. 
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Fig. 5.26: Robust Discrete Sliding-Mode Observer for TanH SMC under Un-Matched Uncertainty and 

Disturbance in Example 5.7. 

 

5.8.8. Example 5.8: Robust Sliding-Mode Observer under Converted Matched 

Uncertainty and Disturbance 

 Example 4.8 is discretized with Ts  0 01. sec  to have 
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 By Proposition 5.2, we can use the analog SMC in Example 4.8 as a discrete SMC for this example. 

However, we have to design a discrete observer by choosing sliding-mode observer dynamics 2 times faster 

than linear SMC, then Theorem 5.10 yields 
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Fig. 5.27: Robust Discrete Sliding-Mode Observer for Linear SMC under Converted Matched Uncertainty and 

Disturbance in Example 5.8. 
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Fig. 5.28: Robust Discrete Sliding-Mode Observer for TanH SMC under Converted Matched Uncertainty and 

Disturbance in Example 5.8. 
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5.9. CONCLUSION 
 In both designs from Utkin and Furuta, there is a boundary layer corresponding to the term sk   , so 

there is no chattering problem, but strictly speaking it is pseudo-sliding mode control while it is not the case 

for the new linear discrete sliding mode control. In the proposed design in Section 2, there is no condition on 

 as in the Furuta's approach (Furuta 1990, Pieper et al 1992). The main advantages of the proposed discrete 

linear SMC are that the control function is simple and the performance is predictable (system-eigenvalues). 

Furthermore, it is applicable to both matched and unmatched uncertainty. There is a condition on the 

sampling rate for uncertain dynamical systems but not for deterministic systems. However, this condition can 

be relaxed by increasing the sampling rate as shown in Example 2 above. 

 

 A convergence condition has been proposed in Sarpturk et al. 1987 to guarantee system stability while 

the hyperplane has not been based on hyperplane-eigenvalues. Unfortunately, our simulation of the violation 

has still produced stable response! In Spurgeon 1992,  the convergence condition has been also presented, 

however there has been no development to support this condition. The hyperplane design has been based on 

hyperplane-eigenvalues as in Utkin et al. 1978. 

 

 A new robust discrete-time linear SMC design has been fully developed. Its analysis has been used to 

explore the true nature of SMC including the invariance property and the stability problem. In the New 

Robust Discrete-Time Linear SMC Design, the control function is partitioned into 3 components: equivalent 

control, reaching control, and perturbation control. The control function is not only continuous but also 

linear. The continuous nature of this control function helps to eliminate the chattering problem in the 

standard SMC design. The advantage of the control function being linear is that some fundamental concepts 

of SMC design can be explained from the linear control theory framework. In the current SMC literature, a 

discrete-time SMC has been presented in Sarpturk et al. 1987, Sira-Ramirez 1991 and Spurgeon 1992, but a 

robust discrete-time SMC has not been fully developed. 
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Chapter 6 

 
Robust Sliding-Mode Fuzzy Controller Design 

 

6.1. INTRODUCTION 

 Since the invention of the first fuzzy controller by Mamdani in 1974, fuzzy controllers have been found 

successfully in numerous industrial applications such as cement-kiln process control, automatic train 

operation, camcorder autofocusing, crane control, etc. These systems could be classified as slow systems. 

We find the best fuzzy structure (membership function, fuzzification, defuzification, rulebase, fuzzy 

inference) applicable to both slow and fast systems 
 

 In a fuzzy control, a typical fuzzy rulebase with 2 entries is used for an 2-nd order system. This approach 

can be extended using a mapping for a 3-rd order system, however it may not be convenient for a higher 

order system unless it can be decomposed into some 2-nd order sub-systems. In a sliding-mode fuzzy 

control, sliding variable and its change are in place of error and its change where all system states can be 

included in the sliding variable (Hwang  et al. 1992). 
 

 The main concern in control engineering is the stability problem. In the current fuzzy control literature, 

the stability of a fuzzy control is based on a fuzzy model that is inferred from mathematical models (Tanaka 

et al. 1992, Ishigame et al. 1993). The stability problem of the sliding-mode fuzzy control in Hwang et al. 

1992 has been unsolved. 
 

 In this chapter, we prove that a typical fuzzy rulebase can satisfy the Lyapunov sliding condition so the 

stability is guaranteed by the Lyapunov stability theorem. On this basis, to design a stable sliding-mode 

fuzzy controller, a fuzzy mechanism is used to minimize a sliding variable s instead of using the sliding 

condition as in the sliding mode control, so we can obtain the invariance property of the sliding mode. In a 

typical fuzzy rulebase, it may not be convenient to use more than 2 entries, we can use 1 entry for s and the 

other for sum of s, and hence a possible steady-state error may be eliminated by this I-action. 
 

 In a fuzzy control, the problems are how to choose the gains for error and its change; and a possible 

chattering (limit cycle). In the current fuzzy control literature, these gains are chosen by trial and error or 

chosen unity without justification, and the unit circle is used to analyze the chattering, not to solve this 

problem. Using the sliding-mode control theory, these gains can be determined by a hyperplane and the 

chattering problem can be solved since the system dynamics are included through these gains (Example 6.1 

& 6.2). 
 

 On the basis of the fuzzy identification in Tanaka et al. 1992 and Ishigame et al. 1993, we develop a new 

fuzzy identification scheme which is simpler and more practical. The fuzzy inference will be used to obtain 

the most potential model from some rough mathematical models from experiments using a proposed 

practical system identification. Due to the robustness, a rough system model is required rather than an 
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elaborate mathematical model as in a conventional control, a practical system identification is presented for 

this purpose. A fuzzy model by the proposed scheme can be a solution to the conservative problem. 

 

6.2. FUZZY CONTROL 

 The following is a typical fuzzy-logic control system. 
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Fig. 6.1: Fuzzy Control Architecture 

where 
 r e d u y, , , , and  are real variables 

  ,  , e d u and  are fuzzy variables 

 fuzzification transforms real input variables into fuzzy variables 

 rule-base inference is used to compute a fuzzy control variable 

 defuzzification converts the fuzzy control variable into a real variable to control the system 

 

6.2.1. Membership Functions 

 Membership function can be a triangle or bell function. 
 

6.2.1.1. Triangle Membership Function 

 Triangle membership function is defined as 
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where a b ci i i, ,  are defined as in the following figure 
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Fig. 6.2: Triangle Membership Function 
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6.2.1.2. Bell Membership Function (Gaussian Distribution Function) 

 Gaussian membership function (Bell function) is defined as 

  i i i
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, , exp 
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 (6.2) 

where a bi i,  are defined as in the figure below 
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Fig. 6.3: Bell Membership Function 

 

6.2.2. Fuzzification 

 The followings are some typical fuzzifications 
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Fig. 6.4: Typical Fuzzifications 
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Remark 6.1: Normal and Weighted Fuzzifications 

 The fuzzification of linear distribution is termed as a normal fuzzification due to its uniform distribution. 

The fuzzification of nonlinear distribution is termed as a weighted fuzzification since the distribution is 

weighted in the middle. 
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Fig. 6.5: Normal and Weighted Fuzzifications 

 

6.2.3. Fuzzy Rulebase 

 A fuzzy rulebase can take 3 forms: soft, sharp and full rulebase. 
 

6.2.3.1. Soft Rulebase 

 A soft rulebase has a little output change around the middle. All input and output variables have the same 

number of values. 

d 

 e 

NBd  NSd  ZOd  PSe  PBd  

NBe  PBu  PBu  PSu  PSu  ZOu  

NSe  PBu  PSu  PSu  ZOu  NSu  

ZOe  PSu  PSu  ZOu  NSu  NSu  

ZOd  PSu  ZOu  NSu  NSu  NBu  

PBe  ZOu  NSu  NSu  NBu  NBu  

Table 6.1: Soft Fuzzy Rulebase 
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6.2.3.2. Sharp Rulebase 

 A sharp rulebase has a remarkable output change around the middle. All input and output variables have 

the same rule number. 

d 

 e 

NBd  NSd  ZOd  PSe  PBd  

NBe  PBu  PBu  PBu  PSu  ZOu  

NSe  PBu  PBu  PSu  ZOu  NSu  

ZOe  PBu  PSu  ZOu  NSu  NBu  

ZOd  PSu  ZOu  NSu  NBu  NBu  

PBe  ZOu  NSu  NBu  NBu  NBu  

Table 6.2: Sharp Fuzzy Rulebase 
 

6.2.3.3. Full Rulebase 

 Every output variable has its own value in a full rulebase. If input variable has n rules, an output variable 

has 2 1n   rules. 

d 

 e 

NBd  NSd  ZOd  PSe  PBd  

NBe  PBu  PMu  PSu  PZu  ZOu  

NSe  PMu  PSu  PZu  ZOu  NZu  

ZOe  PSu  PZu  ZOu  NZu  NSu  

ZOd  PZu  ZOu  NZu  NSu  NMu  

PBe  ZOu  NZu  NSu  NMu  NBu  

Table 6.3: Full Fuzzy Rulebase 

where 

NB, NM, NS, NZ, ZO, PZ, PS, PM, PB: negative big, negative medium, negative small, negative zero, 

zero, positive zero, positive small, positive medium, positive big. 

 

Remark 6.2: Output Change in Full Rulebase 

 The full rulebase also has sharp control change around the middle. 

 

6.2.4. Fuzzy Inference 

 Fuzzy inference can be the minimum or product method. 
 

Minimum fuzzy inference is defined as 
         U E De d e d, min ,  (6.3) 
 

Product fuzzy inference is defined as 
   U E De d e d,        (6.4) 
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6.2.5. Defuzzification 

 Defuzzification can be the mean-of-maxima or centroid method: 
 

Mean-of-Maxima Defuzzification is defined as 
 u e d

m
u u u ui

i

m

U i U U, , max , ,         



1

1
1 2     (6.5) 

 

Centroid defuzzification is defined as 

 u e d
u u u u

u u
U U

U U

,     
   





 

 
1 1 2 2

1 2

 (6.6) 

 

6.3. STABILITY OF FUZZY CONTROL 

 We will analyze the stability of a conventional fuzzy control for a second order system, since it is most 

suitable for these systems. 
 

Lemma 6.1: Stability of Sliding Condition 

 Consider a hyperplane of a second order system 

      
 

   s t
e t
e t

e t e t








     , .


.  ,1 0  (6.7) 

if the following sliding condition is satisfied 
    s t s t.   0  (6.8) 

then e t  decays to zero with a time-constant of  . 

Proof: 

 Consider a Lyapunov function 
 V s t 1

2
2 0    

then by Eq.(6.8), we have  
  . V s t s t     0  

so V, and hence s, decreases to zero since V  0. Thus 
  .  .exp .e t e t e t e t              0 0 0  (6.9) 

since   0 . 

  Q.E.D 

 

Assumption 6.1: Bounds of Uncertain Nonlinear Systems 

 In the following nonlinear second order system 
  ,  ,  .e f e e g e e u      (6.10) 

where 
 f e e e e g e e e e,  ,  , ,  ,             

the polarity of g e e,   is unchanged and without loss of generality, assume that g e e,    0 . If g e e,    0 , 

then let v u   and v will be determined with g e e,    0  then u v  . 
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 Since there is no Z-transform for a nonlinear system, we will consider in continuous time. In view of 

Table 6.1, we can draw a design law that the larger amplitude of antecedents e eand  , the larger amplitude of 

the consequent, so we need to determine the bound of the consequent u in Table 6.1 for the system in 

Eq.(6.30) to be stable. In doing so, we propose the following theorem 

Theorem 6.1: Stability Criterion for Fuzzy Control 

 Consider a nonlinear second order system 
  ,  ,  .e f e e g e e u       

where 
 f e e e e g e e e e,  ,  , ,  ,             

under Assumption 6.1, if u as the consequent in Table 6.1 has the following bound 

 sup
,  

, 
max max max

max max

u
e e e

e e






 
   (6.11) 

then the system is asymptotically stable. It is more feasible to stabilize a slower dynamic system since this 
bound is lower for smaller maxe . 

Proof: 

 Let 

 s e e    

then 
     ,  ,  .s e e e f e e g e e u         (6.12) 

 The ZO-line divides Table 6.1 into 2 areas, s  0 in the upper and s  0 in the lower. Since Table 6.1 is 

symmetric across the ZO-line, it is sufficient to prove for the case s  0, then by Table 6.1 we have u  0. 

For the most conservative case, except ZO, we can choose all as NB and PB with the magnitude of the 

bound in Eq.(6.11). To satisfy Table 6.1, u can be found from 

 u
e e e

e e
 





,  

, 
 

    

substitute into Eq.(6.12), we obtain 

   ,  ,  .
,  

, 
 ,  ,  s e f e e g e e

e e e

e e
e f e e e e e  


         

     


 0   

the by Lemma 6.1, e t   decays to zero with a time constant of 1. 
 

 If there exists a layer in the vicinity of ZO-line within which the value of u is smaller than the required 

boundary value; then the system states are bounded within this layer because once they exit this layer, u 

satisfies the required bound and the states are pulled back into this layer. This phenomenon is the chattering 

problem in a sliding mode control and is the chattering in a fuzzy control. 

  Q.E.D 
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 We have the following proposition as a guide to choose a sampling time. 
 

Proposition 6.1: Selection of Sampling Time 

 In fact, the consequent in Table 6.1 is determined in such a way that it reduces the antecedents to zero. A 

fuzzy controller is usually implemented in discrete form, the sampling time is chosen fast enough 

accordingly to the system dynamics. Otherwise the consequent will over-reduces and a positive e goes to 

negative and vice versa, instead of decaying to zero. Similarly, the sampling time in Theorem 1 is chosen fast 

enough accordingly to the system dynamics, otherwise the condition ss  0 over-reduces s then the next 

sample of s will cross the ZO-line and a boundary layer will be created. In a discrete-time sliding-mode 

control, there is also a condition on the sampling time. 

 

6.4. CASE STUDIES OF FUZZY CONTROL STRUCTURE 

 Since the invention of the first fuzzy controller by Mamdani in 1974, fuzzy controllers have been found 

successfully in numerous industrial applications such as cement-kiln process control, automatic train 

operation, camcorder autofocusing, crane control, etc. These systems could be classified as slow systems. 
 

 In this section, we will consider applications of fuzzy controllers in a slow and fast systems under 

different rule numbers, under different fuzzifications  (normal and weight) and under different rulebases 

(soft, sharp and full). The product method and the centroid defuzzification are used to compute a control 

output. The gains of error and its change are chosen as unity. 
 

 Second-order systems are used since the following reasons: 

 Most of control actuators are servo motor of second order and a system can be decomposed into some 2-

order subsystems (Remark 6.11) 

 It may be the best application of a fuzzy controller with error and its change in 2-order systems since it 

can use full system states in controlling 
 

Remark 6.3: Fuzzy Control Variable 

 Control output is fuzzified within the range  U Urng rng,  where Urng  is chosen to satisfy the constraint of 

a maximum control effort. 
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6.4.1. Fuzzy Control for Slow System 

 Consider the slow servo motor system 

  , ,x Ax B A B 
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6.4.1.1. Soft Rulebase 
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Fig. 6.6: Fuzzy Control of 5 Rules under Soft Rulebase with Different Fuzzifications for Slow System 
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Fig. 6.7: Fuzzy Control of 7 Rules under Soft Rulebase with Different Fuzzifications for Slow System 
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6.4.1.2. Sharp Rulebase 
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Fig. 6.8: Fuzzy Control of 5 Rules under Sharp Rulebase with Different Fuzzifications for Slow System 
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Fig. 6.9: Fuzzy Control of 7 Rules under Sharp Rulebase with Different Fuzzifications for Slow System 
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6.4.1.3. Full Rulebase 
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Fig. 6.10: Fuzzy Control of 5 Rules under Full Rulebase with Different Fuzzifications for Slow System 
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Fig. 6.11: Fuzzy Control of 7 Rules under Full Rulebase with Different Fuzzifications for Slow System 
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6.4.2. Fuzzy Control for Fast System 

 Consider the fast servo motor system 

  , ,x Ax B A B 
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Fig. 6.12: Fuzzy Control of 5 Rules under Soft Rulebase with Different Fuzzifications for Fast System 
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Fig. 6.13: Fuzzy Control of 7 Rules under Soft Rulebase with Different Fuzzifications for Fast System 
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6.4.1.2. Sharp Rulebase 
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Fig. 6.14: Fuzzy Control of 5 Rules under Sharp Rulebase with Different Fuzzifications for Fast System 
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Fig. 6.15: Fuzzy Control of 7 Rules under Sharp Rulebase with Different Fuzzifications for Fast System 
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6.4.1.3. Full Rulebase 
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Fig. 6.16: Fuzzy Control of 5 Rules under Full Rulebase with Different Fuzzifications for Fast System 
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Fig. 6.17: Fuzzy Control of 7 Rules under Full Rulebase with Different Fuzzifications for Fast System 
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6.4.3. Discussion 

 The following remark is proposed some criteria to benchmark applications of fuzzy control for the slow 

and fast systems 

Remark 6.4: Benchmark Criteria 

 Failure is defined as the defuzzification range of control is too big than the actual control. For example, 

in Fig. 6.11, the control range is 650 while the control peak is only 5. 
 

 Success is defined as the defuzzification range of control is less than double inclusively of the actual 

control. For example, in Fig. 6.6, successes occur if the control range is less than 10 inclusively as the 

control peak is about 5. 
 

 For the slow system, we have 
SLOW SYSTEM Normal Output Weighted Output 
Soft Rulebase Normal Input Weighted Input Normal Input Weighted Input 
Urng (5 Rules) 10 10 15 15 
Urng (7 Rules) 15 12.5 45 30 

Sharp Rulebase Normal Input Weighted Input Normal Input Weighted Input 
Urng (5 Rules) 10 7.5 15 10 
Urng (7 Rules) 10 7.5 25 15 
Full Rulebase Normal Input Weighted Input Normal Input Weighted Input 
Urng (5 Rules) 20 15 150 100 
Urng (7 Rules) 20 15 650 300 

 

Remark 6.5: Limitation of Bell Function 

 If bell function is used instead of triangle function, we have 
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Fig. 6.18: Fuzzy Control of 5 Bell Rules under Soft Rulebase with Different Fuzzifications for Slow System 

 

 The bell function goes to zero faster than the triangle function, so the former requires a larger control 

range, this is a limitation due to the criteria in Remark 6.4. 
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Remark 6.6: Centroid Defuzzification more Superior than Mean-of-Maxima Method 

 If the mean-of-maxima defuzzification is used instead of centroid method, we have the following figure 

show that the steady-state error is a serious problem, this is consistent with the work in Brae et al. 1978, 

Tong 1978, Larkin 1985, Sharf et al. 1985. This problem can be solved using sum of error instead of change 

of error, ie. including I-action. However the control performance may not be satisfactory when the D-action 

is not included to deal with fluctuations, if it is the case. 
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Fig. 6.19: Fuzzy Control of 5 Rules under Soft Rulebase with Different Fuzzifications for Slow System using 

Mean-of-Maxima Defuzzification 

 

 For the fast system, we have 
FAST SYSTEM Normal Output Weighted Output 
Soft Rulebase Normal Input Weighted Input Normal Input Weighted Input 
Urng (5 Rules) 10 10 15 15 
Urng (7 Rules) 10 (Osc.) 10 (Osc.) 22.5 (Osc.) 20 (Osc.) 

Sharp Rulebase Normal Input Weighted Input Normal Input Weighted Input 
Urng (5 Rules) 7.5 (Osc.) 7.5 (Osc.) 7.5 (Osc.) 7.5 (Osc.) 
Urng (7 Rules) 7.5 7.5 13 10 
Full Rulebase Normal Input Weighted Input Normal Input Weighted Input 
Urng (5 Rules) 12.5 (Osc.) 12.5 (Osc.) 60 (Osc.) 60 (Osc.) 
Urng (7 Rules) 12.5 (Osc.) 12.5 (Osc.) 330 260 

 

Remark 6.7: Performance of Fuzzy Control for Fast System 

 5-rule soft rulebase and 7-rule sharp rulebase yield comparable results. However, 7-rule soft rulebase 

produces less oscillations than 5-rule sharp rulebase. In addition, less rule number requires less computation. 

5-rule soft rulebase is thus considered to be better. 
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Remark 6.8: Weighted Fuzzifications 

 Weighted input fuzzification yields superior results due to the weighting around the desired set point 

 Weighted output fuzzification produces unsatisfactory results. The control range must be increased for 

the weighted control range to cover the operating control range, this is a limitation due to the criteria in 

Remark 6.4 
 

 By the criteria in Remarks 6.4 to 6.8, we have the following proposition on successful applications of 

fuzzy control for both slow and fast systems: 

Proposition 6.2: Fuzzy Control Structure 

 For the best application in slow and fast systems, a fuzzy control can be take the following structure 

 triangle membership function 

 normal or weighted input and normal output fuzzifications 

 soft rulebase with 5 rules 

 product inference and centroid defuzzification 

 

Remark 6.9: Limitation of Expensive Computation Effort of Fuzzy Control 

 A fuzzy computation may be so expensive that it cannot be completed within one sampling time. The 

maximum sampling time is limited by the dominant system time-constant. 

 

6.5. SLIDING-MODE FUZZY CONTROL 

 In a conventional fuzzy control, a typical fuzzy rulebase with 2 entries is used for an 2-nd order system, 

one entry is for an error and the other for change of error. If a steady-state exists, a sum of error may be used 

instead of change of error to eliminate the steady-state error, then there is no D-action to tackle the 

fluctuations which may exist in the system dynamics (Example 6.2). This approach can be extended using a 

mapping for a 3-rd order system, however it may not be convenient for a higher order system. A sliding-

mode fuzzy control will use s for the first entry and since the D-action is included in s, the other entry is used 

for the sum of s to introduce an I-action in elimination of a possible steady-state error. In addition, a sliding-

mode fuzzy control is applicable for higher order systems since the system states are included in s. 
 

 To control a system effectively, some system information must be used to obtain a model for designing a 

controller. A neu-net control is based on the numerical data from the system input-output to get a neu-net 

model, a fuzzy control is based on the system knowledge-base to have a fuzzy model. For a sliding-mode 

fuzzy control, a hyperplane is designed based on a fuzzy model which is inferred from rough mathematical 

models using step responses due to the robustness of the sliding mode. 
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 From Theorem 6.1, we have the following corollary as a basis for a sliding-mode fuzzy control 

Corollary 6.1: Sliding Variable 

 In Table 6.1, if  

 s e e     

is used as a single entry, then we have Table 6.4 of single entry to determine the consequent u to obtain 

s s.   0. 

Proof: 

 In Table 6.1, the ZO-line corresponds to s  0 , s  0 in the upper area and s  0 in the lower, so Table 

6.1 can be converted as 

s NB NS ZO PS PB 

 PB PS ZO NS NB 

Table 6.4: Typical Sliding-Mode Fuzzy Rules 

and by Theorem 6.1, the consequent is determined on the basis of s s.   0. 

  Q.E.D. 

 

Corollary 6.2: Sliding-Mode Fuzzy Control 

 On the basis of Corollary 6.1 and Proposition 6.2, a sliding-mode fuzzy control can be found from 

 u
s u s

s

S i
i

q

S
i

q

i

i

 











   

 

.  
1

1

,  q rules (6.13) 

 

 We have the following theorem to design an integral robust sliding-mode control 

Theorem 6.2: Integral SMC 

 If u  is a robust sliding-mode control, then an integral robust SMC can be determined by 

 u u s di

t

   .   
0

 (6.14) 

where  i  is a constant as an integral sliding margin . 

Proof 

 Consider the following generic uncertain dynamical nonlinear system 
  .x f x g x     u  (6.15) 

then 
   . . .s t u       Hx H f x H g x   

by Eq.(6.14), we have 

            . . . ~ . .s t u s di

t

    Hx H f x H g x H g x  
0

  

or 

               s t s t s t u s t s di

t

.  . . . . ~ . . .    H f x H g x   
0

 (6.16) 
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where 
  i i

  H g x.    (6.16.a) 

and choose 
    i i i i   .sgn . .H g x H g x    0  (6.16.b) 

 Since u  is a robust SMC of Eq.(6.15), we have 
       s t u. . . . ~H f x H g x  0  

Consider the following 2 cases 
 
 If s 0 0   , then 

   i

t

s t s d  . .


   
0

0   

where the sampling time t  is chosen fast enough, so 

           ss s t u s t s dt i

t

 . . . . ~ . . .



     H f x H g x   
0

0  

 
 If s 0 0   , then 

      i

t

s t s d  . .


0

0   

where the sampling time t  is chosen fast enough, so 

           ss s t u s t s dt i

t

 . . . . ~ . . .



     H f x H g x   
0

0  

  Q.E.D. 
 

 Based on Proposition 6.2 and Theorem 6.2, we have the following corollary to design a sliding-mode 

fuzzy control 

Corollary 6.3: Sliding-Mode Fuzzy Control Design Rule 

 Table 6.5 can be used to design a stable sliding-mode fuzzy control. The  is used for the reaching mode 
on the basis of the sliding-mode design rule, the larger   the faster to reach the hyperplane. The gain  i  is 

chosen large enough to eliminate of a possible steady-state error. 

Proof: 

 In Table 6.5, the partial consequent of s satisfies Table 6.1, so the condition s s.   0 is obtained. In 
addition, the gain   can make the antecedent  s  larger, so the larger consequent make s  0  faster to reach 
the hyperplane. The partial consequent of s dt.  contributes some negative to the consequent, by Theorem 

6.2 the sliding mode is achieved and hence the system is stable. 
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 i s t dt .  

 s t   
NBi  NSi  ZOi  PSi  PBi  

NBs  PBu  PMu  PSu  PZu  ZOu  

NSs  PMu  PSu  PZu  ZOu  NZu  

ZOs  PSu  PZu  ZOu  NZu  NSu  

PSs PZu  ZOu  NZu  NSu  NMu  

PBs  ZOu  NZu  NSu  NMu  NBu  

Table 6.5: Typical Integral Sliding-Mode Fuzzy Rules 

  Q.E.D. 

 

6.6. A NEW FUZZY IDENTIFICATION SCHEME 

 Consider the following i-th process rule of a step response 
 R if response is M then u i qi i i i i: ,  , , ,x A x B   1  ;    q rules (6.17) 

then a fuzzy model can be inferred from 
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q
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q
1

1

 (6.18) 

where 

 M i  is a fuzzy set of response in magnitude 
  i  is a membership function of magnitude M i  
 

Example: 

 R if response small then
a b

u1 1
1 1

0 1
0

0
: is , x x









 









   

 R if response medium then
a b

u2 2
2 2

0 1
0

0
: is , x x









 









  

 R if response big then
a b

u3 3
3 3

0 1
0

0
: is , x x









 









   

 

 In a fuzzy control, a fuzzy inference is used to minimize an error between an actual system output and a 

desired system output. Differently, in a fuzzy identification, a fuzzy reasoning is used to infer a fuzzy model 

which includes a maximization of interactions between all the models. Thus we propose the following fuzzy 

identification 
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Proposition 6.3: Fuzzy Modelling 

 We get several step responses, both positive and negative if possible,  and at different load for each step 

input if there is a variable load. On the basis of magnitude of responses, these mathematical models are 

fuzzified, inferred and defuzzified to obtain a fuzzy model where the uncertainty is taken into account 
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 (6.19) 

where  is any element of A or B in Eq.(6.18). 

 

6.7. PRACTICAL SYSTEM IDENTIFICATION 

 Most of physical systems can be practically decomposed into some subsystems of first order or second 

order. In this section, we will review some relevant step responses of first and second order systems for 

convenience to identify a rough mathematical model. First we revise some results in Laplace transform 

which will be used in this section 

       F s f t f t e dtst  


L
0

  

Initial value theorem 

     lim lim
t s

f t s F s
 


0

 

Final value theorem 

     lim lim
t s

f t s F s
 


0

 

 A step response of amplitude a and its derivative will be used to identify the dynamics. The derivative 

helps to identify 2 similar step responses and to recognize a possible time-delay in a step response. 
 

6.7.1. Identification of Systems with Negative Real Poles 
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where a, b are solutions of the following equation using numerical method with 2 points T V T V1 1 2 2, ,    and  

on the derivative of step response 
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 Since the equation are transcendental, we may need the Taylor series to obtain an approximate algebraic 

equations to ease the problem 
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Proposition 6.4: Identification of Over-Damped Second Order System 

 Instead of solving the above equations, since a b  is not larger than 3, otherwise the system can be 

considered as a first order system, we can obtain a rough model using a graphical method by starting with   

based on the time-constant of an approximate first order system. 
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6.7.2. Identification of System with Integral Element 
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where K is the slop of the line in the derivative of the step response. 
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Remark 6.10: Necessity of Derivative Response 

 The step responses in Figs. 6.20 & 6.21 look similar, but the difference is in their derivatives. Similarly 

for Figs. 6.22 & 6.23. This justifies the necessity of a derivative of response. 

 If the steady-state value of derivative is not available, the time-constant can be estimated using the 

asymptote in the step response as in Fig. 6.23. 
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6.7.3. Identification of Second Order System under Sustaining Oscillation 

 In this sub-section, yc  at the center of oscillation instead of yss , we will use the period T determined on 

the step response graph, ya  is an amplitude of a sinusoid and 
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6.7.3.2. CASE OF y yc0 0 0 ,  
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6.7.3.3. CASE OF y yc0 0 0 ,  
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6.7.4. Identification of Second Order under Damped Oscillation 

 In this sub-section, we will use 
   1 2   

and 
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where T , , 1 2  will be determined on the step response graph. 
 
6.7.4.1. CASE OF y yss0 0 0 ,  
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6.7.4.2. CASE OF y yss0 0 0 ,  
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6.8. CASE STUDIES OF FUZZY IDENTIFICATIONS 

 An 2-nd order Static-VAR and a 3-rd order Ball-Hoop systems will be considered in this section. 
 

6.8.1. Static-VAR System 

 We will obtain several step responses with different step inputs, since the system dynamics are highly 

uncertain due to the loading, different loads are set for each step input. 
 

6.8.1.1. System Order Identification 

 First we identify the system order by considering one of step responses 
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Fig. 6.30: Step Response for Static-VAR System 

 The derivative of step response shows that the system can be considered as a second order system with a 

time delay of 0.05 sec. 
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6.8.1.2. Fuzzy Identification 

 The followings are step responses of different step inputs at different loads, they are sorted in ascending 

order of magnitude. 

 

 

 
Fig. 6.31: Step Responses of Static-VAR System 
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 By Proposition 6.3, we have 18 mathematical models above of the following forms 
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K e

s s

s

    
 

0 05

8 20

.

  

where  K  specified at each plot in Fig. 6.31 above. 

 These models are fuzzified, inferred and defuzzified on the basis of steady-state of step response 

specified in each plot in Fig. 6.31 above to obtain the following fuzzy model 

 G s
K e

s s
K

s

    
 

 
0 05

8 20
87 3 53 133

.

, . ,   

 

6.8.2. Ball-Hoop System 

 The Ball-Hoop system is composed of 2 subsystems: hoop and ball subsystems. 

Hoop
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Fig. 6.32: Ball-Hoop System 

 

6.8.2.1. System Order Identification 
 

 Hoop Dynamics 

 Using a step of 2, we have the following step response for hoop dynamics 
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Fig. 6.33: Response of Hoop Subsystem with step of 2 

where Hoop_Dot is the difference of consecutive elements of Hoop, ie. 

 Hoop Dot i
Hoop i Hoop i

Ts

_ [ ]
[ ]


 1
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We need to filter out all noise before modelling. In doing so, we use  a low-pass digital filter FIR (Finite-

Duration Impulse Response) with cut-off frequency at 3 Hz, Kaiser window with =3, filter length of  21. 
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Fig. 6.34: Response of Hoop Subsystem with step of 2 after Low-Pass Digital Filter FIR using Kaiser window 

with f Hz L Nc   3 3, , . 

 

 From the graph of Hoop_Dot, we have the following second order model for the hoop dynamics 
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 Ball Dynamics 

 We have the following step response of the ball dynamics 

-5

0

5

10

B
a

ll

Response of Ball Subsystem

 
Fig. 6.35: Step Responses of Ball Subsystem with Negative Step Input 
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so we have the following second order model for the ball dynamics 
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thus we have the following model of Ball-Hoop system 
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Fig. 6.36: Identification of Ball-Hoop System Model 

 

6.8.2.2. Fuzzy Identification 

 9 models have been achieved from experiments. Since the hoop position will be under control, the 9 

models will be in ascending order of the magnitudes of the final values from the hoop position where all 

responses are normalized using unit step input. 
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Fig. 6.37: Step Responses for 9 Models of Ball-Hoop System 
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Fig.6.38: Fuzzy Model of Ball-Hoop System 

 

 By Proposition 6.3, we have the following fuzzy model of Ball-Hoop system 
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Fig. 6.39: Fuzzy Model of Ball-Hoop System 

where 
 K K1 21 28 0 61 1 43 74 92 70 80 1 5 1 2 1 5     . . , . , . , , . . , .  

 Kb b b        2 25 2 0 2 7 0 65 0 6 0 69 115 74 100 132. . , . , . . , . , . ,   

and 
 H Bp p,  are hoop and ball position 

 Hc  is hoop tacho 

 

Remark 6.11: Higher-Order System decomposed into 2-Order Subsystems 

 4-order Ball-Hoop system can be decomposed into 2 second-order subsystems as in Fig. 6.38. 
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6.9. NUMERICAL EXAMPLES 

 Fuzzy structure is based on Proposition 6.2. For sliding-mode fuzzy controls, sliding and integral sliding 

margin are determined on the basis of the sliding-mode fuzzy design rule proposed in Corollary 6.3. Gains of 

e e,  are arbitrarily chosen unity for conventional fuzzy controls. 
 

6.9.1. Example 6.1: Fast Servo Motor System 

 Consider the fast servo motor system 

 A B=
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-600
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6.9.1.1. Fuzzy Control with Unity Gains 

 From the section above, the best result for this system has used the following fuzzy parameters 
 e   2 0000 0 6667 0 0 6667 2 0000. , . , , . , .   

 d   5 0000 1 6667 0 1 6667 5 0000. , . , , . , .   

 u   10 5 0 5 10, , , ,   

then 
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Fig. 6.40: Conventional Fuzzy Control using Soft Rulebase of 5 Rules with Weighted Input and Normal 

Output for Example 6.1 with unity gain for e e, : chattering 

 

6.9.1.2. Sliding-Mode Fuzzy Control 

 By the design rule, choose 
   H i   12 10 1, ,   

and 
  s   2 0000 0 6667 0 0 6667 2 0000. , . , , . , .   

  si   1 0000 0 3333 0 0 3333 1 0000. , . , , . , .   

  u   10 5 0 5 10, , , ,   



Sliding-Mode Control: Advanced Design Techniques 6.34 

then we have 
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Fig. 6.41: Sliding-Mode Fuzzy Control for Example 6.1: No Chattering 

 

6.9.2. Example 6.2: Static VAR System 

 Consider the static VAR system above 
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so with the sampling time of T ss  0 01. , we have the following discrete model 
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thus 
 u k k d     x   

and 
 s k k d     x   

 

6.9.2.1. Fuzzy Control with Unity Gains 

 Choose fuzzy parameters as 
 e   4 2 0 2 4, , , ,   

 d   10 5 0 5 10, , , ,   

 u   10 5 0 5 10, , , ,   
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then 
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Fig. 6.42: Conventional Fuzzy Control for Example 6.3: Significant Steady-State Error 

 

6.9.2.2. Robust Sliding-Mode Fuzzy Control 

 Choose the same fuzzy parameters above and by the design rule, choose 
   H i   20 12 50, ,   
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Fig. 6.43: Robust Sliding-Mode Fuzzy Control for Example 6.3. 

 

Remark 6.12: Sliding-Mode Fuzzy Control Invariant to Fuzzy Structure 

 In Example 6.1 and 6.2, varying the rule number and fuzzification weighted yields the same response. 
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6.9.3. Example 6.3: Ball-Hoop System 

 Since it is not convenient to use more than 2 entries in a typical fuzzy rulebase, a convention fuzzy 

control may be hardly applied for systems higher than third order unless the system can be decomposed into 

some 2-nd order sub-systems. We consider a robust sliding-mode fuzzy control in this example of 4-th order 

system. 
 

 The fuzzy model of ball-hoop is used as the nominal model since it is the most potential model: 
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by the design rule, choose 
    H i     8 8 8 8 0 1, , , , .   

thus 
  H  0.0460 0.0862 1.2738 0.0029   
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Fig. 6.44: Sliding-Mode Fuzzy Control with New Fuzzy Identification for Example 6.4. 
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6.10. CONCLUSION 

 The stability of a fuzzy control is not based on the fuzzy model so it is applicable to a conventional fuzzy 

control where a fuzzy model is not available. The proposed fuzzy identification is used to obtain a fuzzy 

model for the purpose of the hyperplane design. 
 

 A conventional fuzzy control has no problem with slow systems; however, for a fast system there may be 

the chattering problem since the system dynamics are not included in the design, that is the gains for error 

and its change are unity regardless the system dynamics. A fuzzy control using the soft rulebase with 5 rules 

of normal or weighted input and normal output triangular defuzzifications can be best applied for both slow 

and fast systems. 
 

 The performance of a sliding-mode fuzzy control is better than that of a conventional one since the 

system dynamics are included in the design of a sliding-mode fuzzy control, and varying the rule number and 

fuzzification weighting yields no remarkable improvement. 
 

 It is not convenient to introduce more than 2 input variables in a fuzzy table, normally the first entry is 

for error and the second is for change of error or sum of error. It may be hard to use a conventional fuzzy 

control for systems higher than second order  unless the system can be decomposed into some 2-nd order 

sub-systems. In addition, for a 2-nd order system, the error must be used as the first entry in a fuzzy table; 

however, only change of error or sum of error can be used in the second entry, but not both. By using a 

sliding mode fuzzy control, this limitation is removed because all system states can be included in a sliding 

variable via a hyperplane equation (derivative action) as the first entry of a fuzzy table, and a sum of error 

can be used as the second entry. The scheme using sum of s without integration of error may be advantage 

over change of s with integration of error. 
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Chapter  7 

 
General Sliding-Mode  Controller  Design for 

MIMO Uncertain Nonlinear Systems 
 

7.1. INTRODUCTION 

 In this chapter, we present a sliding-mode control (SMC) design for SISO and MIMO nonlinear systems. 

So far we have only considered the case where the output is the first system state. In this chapter we will 

consider the general case where the output is a nonlinear function of all system states. 
 

 For a MIMO SMC, the hierarchical control technique has been used in Utkin 1977 for linear systems. 

Alternatively, we will use a decoupling technique which is applicable for MIMO nonlinear systems. This 

technique allows a MIMO to be considered as a set of SISO subsystem. As consequence, all SISO results 

developed so far can be applied, including this chapter. 
 

 For the general SMC design for MIMO nonlinear systems, in the SMC literature (Fernandez  et al. 1987; 

Chen  et al. 1992), the hyperplane design has been based on the  Input-Output Linearization technique (Hunt  

et al. 1983, Isidori 1985, Kravaris  et al. 1986) to transform a nonlinear system into a canonical nonlinear 

system. By the nature of a hyperplane that it is of reduced-order, we will design the hyperplane via the direct 

allocation approach in Chapter 2. The controller will be designed in a unified manner as in other cases. The 

proposed robust design may be the simplest approach in the literature (Fu 1992, Sira-Ramirez 1996). In 

addition, the design scheme in Proposition 3.3 is proved to be efficient in solving the chattering and steady-

state error (Example 7.6). 

 

Part  A : SMC Design for SISO Uncertain Nonlinear Systems 
 

 We start with the hyperplane design and a nonlinear system stability test. Next we present a  

discontinuous SISO nonlinear SMC and a  continuous SISO nonlinear SMC. We then present a general SMC 
design for nonlinear systems where the output does not have to be the first state, y x 1, it can be a nonlinear 

function of system states, y   x  . We then present a robust discontinuous SMC design and robust 

continuous Pseudo-SMC design for SISO uncertain nonlinear systems. 

 

7.2. HYPERPLANE AND STABILITY 

 In Chapter 2 on the hyperplane design, the proof of the direct allocation method is based on linear 

systems. In Chapter 3, the proof of the stability test is based on linear systems. Now both proofs will be 

modified so that they are also applicable to nonlinear systems. As consequence, the I/O-state technique can 

be applicable for both linear and nonlinear systems. 
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7.2.1. Hyperplane Design 

Theorem 7.1: Hyperplane Design for Canonical Nonlinear Systems 

 For a  n-ordered canonical  linear or nonlinear system, if the hyperplane-eigenvalues are 
  H n   1 2 1, , ,  (7.1) 

then a hyperplane  can be found by 
 s h h hn  H x H. ,    1 2 1 1  (7.2) 

where hi  is the coefficients of the following polynomial 
                 





1 2 1

1
1

2
2 1     n

n
n

nh p  (7.3) 

Proof 

 Consider the following  n-ordered canonical linear or nonlinear system of the output  y x 1 
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      x x x      :  linear or nonlinear function of the system state variable   
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In the sliding mode, we have the following linear differential equation 
 s h x h x x h y h y yn n n n

n n            
 0 0 01 1 1 1 1 1

2 1
 

     (7.4) 

then the corresponding characteristic equation is 
  n

n
nh h


   1

1
2

1 0  (7.5) 

thus if the roots of this equation Eq.(7.5) are Hurwitz, then the output is settled  down  via  the  above linear 

differential equation Eq.(7.4). 
 Therefore, to design a hyperplane for a canonical linear or nonlinear system, first choose the n 1  
desired hyperplane-eigenvalues to be Hurwitz 
  H n    1 1, ,     

then the hyperplane is determined by the coefficients of the characteristic equation as follows 
             





1 1

1
1

2
2 1    n

n
n

nh h h   

 Q.E.D. 
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Remark 7.1: Hyperplane Design for Canonical Linear and Nonlinear Systems 

 Note that this proof is more general than that in Section 2.3.1 because it is for both linear and nonlinear 

systems. 
 Note that   x  is not taken into account in the hyperplane design, but it will be in the controller design.  

This is consistent with the invariance condition because a canonical form satisfies the matching 

condition. 

 

7.2.2. SMC Stability Criterion for Nonlinear Systems 

 Based on Theorem 7.1 above, we have the following corollary on a stability test for both linear and 

nonlinear systems. 

Corollary 7.1: Stability Criterion 

 For an  n-ordered canonical  linear or nonlinear system, if there exists a control function to satisfy the 

sliding condition s s.   0 on the hyperplane determined by Theorem 7.1, then the system is stable. 

Proof 

 The control function satisfying the sliding condition will drive the system into the sliding mode. Then, by 

Theorem 7.1, the system is stable. 

 Q.E.D. 

 

7.3. ROBUST DISCONTINUOUS SMC DESIGN FOR SISO UNCERTAIN NONLINEAR 

SYSTEMS 

 In this section, we will consider a robust SMC design for SISO uncertain nonlinear systems. 

 

7.3.1. Discontinuous SMC Design for SISO Nonlinear Systems 

 We first define a nonlinear system states vector to be used in a SMC for a nonlinear system 

Definition 7.1: Nonlinear System States Vector 

 Consider a SISO nonlinear system 
  , , .x t f x g x      t t u  (7.6) 

then nonlinear system states vector is composed of every term in f x, t  . 

 For example in Example 7.1, we have 

  . ,



,

sin( )
,x f g x f g  








 
















u

x

x

x

x x x tx x
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1 2 1
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1 12
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then 
  w  x x x x tx2 1 2 1

2
1, , , sin( )   

 



Sliding-Mode Control: Advanced Design Techniques 7.4 

 We then have the following theorem to design a discontinuous SMC for a nonlinear system 

Theorem 7.2: Discontinuous SMC Design for Nonlinear Systems 

 Consider a SISO nonlinear system in Eq.(7.6), then a discontinuous SMC control function can be found 

by 
 u u ue r   (7.7) 

where 

  equivalent control 
 u we e i     Hg Hf K w w w x x     1 . ,  (7.7.a) 

  reaching control 
 u sr r r  Hg K w K   1  . ,sgn   (7.7.b) 

with   
 x f g H, , ; ; , ;    


n u s1              1 n     : sliding margin.  

Proof 

 Consider a hyperplane 
 s s u u u ueq        Hx Hx H f g Hg Hg Hf Hg  . . .     1   

then the definition of  w above, we have 
     u k weq ei iHg Hf x   1   

As usual, let 
 u k wi i  x   

then, to satisfy the sliding condition, we obtain 

 ss k
k s w

k s w
k

k s w

k s wi

ei i

ei i
i

ei i

ei i


,

,

*,

*,
 

  

  





 
  

  





0
0

0

0

0

     if   

     if   

     if   

     if   

Hg
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thus by Lemma 3.1, a discontinuous SMC control function is 
 u k w w s k w w sei i i ei i i            x x x Hg x              * . .sgn sgn1   

where 
   Hg. * 

  Q.E.D. 

 

Remark 7.2: Reaching Control 

 We have chosen equal sliding margin for the reaching control since we have not known the dynamics of 

w. This remark will applies for all designs in the sequel. 

 

7.3.2. Robust Discontinuous SMC Design for SISO Uncertain Nonlinear Systems 

 We have the following assumption 

Assumption 7.1: System Constraint on Parametric Variation 

 A system matrix g takes any variation such that the polarity of Hg   is unchanged, i.e. 

 sgn sgnHg Hg     (7.8) 

where  g  is the nominal value of g . 
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 Under Assumption 7.1, we have the following theorem 

Theorem 7.3: Robust Discontinuous SMC Design for Uncertain Nonlinear Systems 

 Consider a canonical uncertain nonlinear SISO system 
   ,  , .x f x g xt t t u        (7.9) 

then, under Assumption 7.1, a robust discontinuous SMC control function is determined by 
 u u u ue r p    (7.10) 

where 

  equivalent control 

 ue e e
i i  


K w K. ,
sup inf

2
 (7.10.a) 

  reaching control 
 u sr r r  K w Hg K . ,sgn    (7.10.b) 

  perturbation control 

 u sp p p
i i  


K w Hg K. . ,
sup inf

sgn 
2

 (7.10.c) 

with w , sup , infi i   defined by 

      
 u w weq

i

i
i

i

i

i
iHg Hf

Sup
Inf

w
Sup
Inf

w w x x  .
sup
inf

. ,
sup
inf

,     1            =   

where  
 x f g H,  ,  , , , ,    


n u s1              1 n     : sliding margin.  

Proof 

 Consider a hyperplane 
 s s u u u ueq        

Hx Hx H f g Hg Hg Hf Hg    .  .    .     1   

then 
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 Let 
 u k wi i  x   

then, to satisfy the sliding condition 
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thus, by Lemma 3.1,  under Assumption 7.1, the discontinuous SMC control function is 

 u w w si i
i

i i
i 





   





  

sup inf sup inf
.

2 2
x x Hg      sgn   

 Q.E.D. 

 

Remark 7.3: Nonlinearity as Uncertainty 

 We can apply this robust control formula for the nonlinear case where the nonlinearity is considered as 

an uncertainty within an operating range. 
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Remark 7.4: Alleviation of Chattering 

 To eliminate the chattering problem, for simplicity, the discontinuous SMC control functions in 

Eqs.(7.7) and (7.8) are smoothed out by the following substitution of a hyperbolic tangent function (Section 

3.5.4) 
 sgn s k ss    tanh  (7.11) 

where  ks  is chosen low enough to eliminate the chattering problem. This is a continuous pseudo-SMC 

(Remark 3.4) 

 

Remark 7.5: Performance of Pseudo-SMC 

 As stated in Remark 4.14, there is negligible difference between a true-SMC and a pseudo-SMC. 

 

7.4. ROBUST CONTINUOUS SMC DESIGN FOR SISO UNCERTAIN NONLINEAR SYSTEMS 

 In this section, we will consider a SMC design for SISO nonlinear systems, then a robust pseudo-SMC 

design for SISO uncertain nonlinear systems. 

 

7.4.1. Continuous SMC Design for SISO Nonlinear Systems 

 Under no perturbation, we have the following theorem. 

Theorem 7.4: Continuous SMC Design for Nonlinear Systems 

 Consider a canonical nonlinear SISO system 
  , , .x t f x g x      t t u   

then a continuous SMC control function is determined by 
 u u ue r   (7.12) 

where 

  equivalent control 
 ue  

Hg Hf  1 , (7.12.a) 

  reaching control 
 u sr   Hg  1 . .  (7.12.b) 

where 
 x f g H, , , , , ,    


n n u s1 1                : sliding margin.  

Proof 

 Since the canonical form, the direct eigenvalue allocation is applied for a hyperplane 
 s s u u       Hx Hx H f g Hg Hg Hf  . .    1   

by the above continuous SMC control function, we have 

ss s .   2 0: the sliding condition is satisfied. 

 Q.E.D. 
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7.4.2. Robust Continuous Pseudo-SMC Design for SISO Uncertain Nonlinear 

Systems 

 For an uncertain nonlinear system, we have only a pseudo-SMC which is determined by the following 

corollary 

Corollary 7.2: Robust Continuous Pseudo-SMC Design for Uncertain Nonlinear Systems 

 Consider a canonical uncertain dynamical nonlinear SISO system 
   ,  , .x f x g xt t t u         

then, under Assumption 7.1, a discontinuous SMC control function is determined by 
 u u u ue r p    (7.13) 

where 

  equivalent control 

 ue e e
i i  


K w K. ,
sup inf

2
 (7.13.a) 

  reaching control 
 u k sr r s r  K w Hg K . tanh ,    (7.13.b) 

  perturbation control 

 u k sp p s p
i i  


K w Hg K. . tanh ,
sup inf 

2
 (7.13.c) 

with w , sup , infi i   defined by 

      
 u w weq

i

i
i

i

i

i
iHg Hf

Sup
Inf

w
Sup
Inf

w w x x  .
sup
inf

. ,
sup
inf

,     1            =   

where 
 x f g H,  ,  , , , ,    


n n u s1 1                : sliding margin.  

Proof 

 By Section 3.5.4, the sign function is replaced by the hyperbolic tangent function to eliminate the 

chattering problem. 

 Q.E.D. 

 

7.5. GENERAL SMC DESIGN FOR SISO NONLINEAR SYSTEMS 
 For a general case, now the output does not have to be the first state, y x 1, it can be a possibly nonlinear 

function of system states, y   x  . First we have a discontinuous SMC, then a continuous SMC.  For a 

discontinuous SMC, we have the following theorem 
 

Theorem 7.5: General Discontinuous SMC Design for Nonlinear Systems 

 Consider a general nonlinear SISO system 

 
 , , .x f x g x

x

 







t t u

y

   
 

 (7.14) 

with the relative degree of   n, then a  discontinuous control function can be found by 
 u u ue r   (7.15) 
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where 

  equivalent control 
 u L L Le

n n
n n   

g f f H z1 1

1 1 2       : : , (7.15.a) 

  reaching control 
 u L L s sr

n   

g f H z1 1
    . . , .sgn  (7.15.b) 

with 
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Proof 

 By the I/O state method, keep differentiating  y until  u first appears, since the relative degree  r, under 

the  Lie derivative's notation: 
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where 
 v L L L u u L L v Ln n n n      

f g f g f f   1 1 1
.      

then by the direct allocation method, we have a hyperplane 
 s h h s v v vn n n eq       Hz z H z1 1 1 1 21, , , . 

: :       

with 
 veq n n  H z1 1 2: :      

To satisfy the sliding condition,  
 s s s v veq.     0 0    
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then the control function is 
 v v s s s seq      . .  .sgn  0  

thus 
 u L L v s L L L s Ln

eq
n n

n n
n         

g f f g f fH z1 1 1 1

1 1 2                 . .: :sgn sgn  

  Q.E.D. 

 

 Now for a continuous SMC, we have the following theorem 

Theorem 7.6: General Continuous SMC Design for Nonlinear Systems 

 Consider a general nonlinear SISO system 
  , , . ;x f x g x x  t t u y                  

with the relative degree of   n, then a  continuous control function can be found by 
 u u ue r   (7.16) 

where 

  equivalent control 
 u L L Le

n n
n n   

g f f H z1 1

1 1 2       : :  (7.16.a)  

  reaching control 
 u L L s sr

n   

g f H z1 1
   . . , .  (7.16.b) 

where 
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x x x
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 H z1 1 1 2 2 1 2 2 3 1: :, , , , , , , , ,n n n n n n
T

h h h h z z z z                 .  

Proof 

 Similar to the above proof, but now for a continuous SMC, to satisfy the sliding  condition,  the control 

function is 
 v v s s s seq      . .  . 2 0   

thus 
 u L L v s L L L s Ln

eq
n n

n n
n         

g f f g f fH z1 1 1 1

1 1 2               . .: : .  

 Q.E.D. 
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Part  B : General  SMC Design for MIMO  Uncertain Nonlinear  
Systems 

 

 In this part, we will use a simple decoupling method to convert a MIMO system into a multiple SISO 

subsystem, then all SISO results developed so far can be applied, including robust results and even the recent 

nonlinear result. 

 

7.6. GENERAL SMC DESIGN FOR MIMO UNCERTAIN NONLINEAR SYSTEMS 

 This section will generalize the SISO technique above for MIMO nonlinear 

Theorem 7.7: General Discontinuous SMC Design for MIMO Nonlinear Systems 

 Consider a general nonlinear MIMO system 
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If the system Jacobian L LG f
r x1   is non-singular, then a discontinuous control function can be found from 

 u u u e r  (7.18) 

where 

  equivalent control 
 u H zG f

r 1
f
r

1:r 1e nL L L   

       
1

2: , (7.18.a) 

  reaching control 
 u s s H zG f

r 1
r L L   

    1
. . , .sgn  (7.18.b) 

Proof 

 Similarly to the case of SISO 

 





.





.

y L

y L

y L

y L L L u

y L

y L

y L

y L L L u

r r

r r r

m m

m m

m
r r

m

m
r r r

m

m m

m m

m

m

1 1

1
2

1

1
1 1

1

1 1
1

1

2

1 1

1
1

1 1

1 1

1

1







 

















 











 



 



f

f

f

f g f

f

f

f

f g f







 







 

  

 

 

 

 

            

where 
 r  r rm1   :  relative degree of the system  
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since the system Jacobian L LG f
r x1   is non-singular, so 

 u vG f
r

f
r  

L L L1 1
      

thus the control function, elementwisely 

 
u L L L s

s

i
r r

r

i
n

i i
i

i
i i

i i

i
   











 

G f f H z

H z

1 1
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: .

.

 sgn
  

 Q.E.D. 

 

 For a continuous SMC control function 

Theorem 7.8: General Continuous SMC Design for MIMO Nonlinear Systems 

 Consider a general nonlinear MIMO system 
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 If the system Jacobian L LG f
r x1   is non-singular, then the continuous control function is determined by 

 u u u e r  (7.19) 

where 

  equivalent control 
 u H zG f

r 1
f
r

1:r 1e nL L L   

       
1

2: , (7.19.a) 

  reaching control 
 u s s H zG f

r 1
r L L   

   1
. . , .  (7.19.b) 

Proof.  

 Similarly to the above proof of Theorem 7.7. 

  Q.E.D. 

 

Remark 7.6: Singular System Jacobian 

 If the system Jacobian L LG f
r x1   is singular, then the Structure Algorithm (Silverman 1969)  and the 

error dynamic equation (Chen  et al. 1992) must be used. 

 

Remark 7.7: A Robust SMC Design for General MIMO Uncertain Nonlinear Systems 

 For a class of MIMO systems whose system Jacobians are non-singular, we can use a simple decoupling 

technique to get a multiple SISO subsystem, then all the robust SISO results so far are directly applicable for 

a robust general SMC design for MIMO uncertain nonlinear systems. It is a very direct extension, Example 

7.6 illustrates this issue. 
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7.7. NUMERICAL EXAMPLES. 

 Because it is quite feasible for a SMC to deal with nonlinear systems, so there is no differences, and 

hence no difficulties in the design approach between the  regulating control and the  tracking control. Thus it 

is illustrated by an example without any special development. 
 

 This section is crucial in the fact that it clarifies something left open previously for the sake of simplicity, 

such as the design of a tracking control, the definition of w in an equivalent control (Section 7.3), the 

decoupling technique to convert a MIMO system into a multiple SISO subsystem, a robust MIMO general 

SMC controller design (Remark 7.7). 
 

 There is no original design available for all the following examples, the proposed designs are based on 

the  design guideline in Proposition 3.1. 

 

 For MIMO examples, Example 7.4 to 7.6, each has 2 simulations to check interactions after decoupling, 

only the first output is under control in the first simulation, then both are under control in the second 

simulation. 

 

Remark 7.8: Summary of SMC for Uncertain MIMO Systems 

 We will consider only canonical nonlinear system 

 Hyperplane for a SISO canonical nonlinear system can be computed using Theorem 7.1; 

 Continuous SMC for SISO nonlinear systems can be designed using Theorem 7.4. There is no such 

design for uncertain systems; 

 Discontinuous SMC for SISO uncertain nonlinear systems can be designed using Theorem 7.3 where 

deterministic systems are special cases (or Theorem 7.2 can be attempted); 

 For general SISO nonlinear systems where the output is a function of system states, discontinuous and 

continuous SMC can be designed using Theorem 7.5 and 7.6, respectively; while Theorem 7.7 and 7.8 

for MIMO systems. 

 

7.7.1. Example 7.1: SISO Nonlinear System 

 Consider a system in Zhou  et al. 1992: 
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,
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choose a hyperplane-eigenvalue 
  H    2 2 1H   

 By Eq.(7.7), the equivalent control is 

         


u x x x x x txeq Hg Hf  1
1

1

2 1 2 1
2

11 2 2 sin( )   

thus K we x x x x x tx   


1 2 2 1 11

1

2 1 2 1
2

1  , , , , , , , sin( )            
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7.7.1.1. Discontinuous SMC 

 Theorem 7.3 yields a discontinuous SMC as 
  u se r  K w K w. . .sgn    

choose   2  to have 

  K r x  
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Fig. 7.1: Regulating Discontinuous Nonlinear SMC for Example 7.1. 

 

7.7.1.2. Continuous Pseudo-SMC 

 In the discontinuous control function above, let    sgn tanhs k ss  and choose ks  15 , then we have 
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Fig. 7.2:  Regulating TanH-Continuous Nonlinear SMC for Example 7.1. 
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7.7.1.3. Continuous SMC 

 Theorem 7.4 yields a continuous control function as 

 u s x
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x x x tx
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Fig. 7.3:  Regulating Continuous Nonlinear SMC of Form 3 for Example 7.1. 

 

7.7.1.4. Performance 

 The performance of the continuous SMC is comparable to that of the continuous pseudo-SMC. 

 

7.7.2. Example 7.2: SISO Uncertain Nonlinear System 

 Consider a system in Zhou  et al. 1992 which is modified with uncertainties 

 


 sin( ) , ,
.

.

x

x

x

ax x bx b tx x u a b1

2

2

1 2 1
2

1 11
3

1

1 5

0 5
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or 

  sin( )s x u x x ax x bx b tx        




1 1 21 1

1

2 1 2 1
2

1   

so 

             










 

u x x ax x bx b tx x x x x xeq 1 2 1
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7.7.2.1. Robust Discontinuous SMC 

 Theorem 7.3 yields a control function as 
 u se rp  K w K w. . .sgn    

where 
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Fig. 7.4:  Robust Discontinuous Nonlinear SMC for Example 7.2, 2 curves coincide. 
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7.7.2.2. Robust Continuous Pseudo-SMC 

 In the discontinuous control function above, let    sgn tanhs k ss  and choose ks  30 , then we have 
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Fig. 7.5:  Robust TanH-Continuous Nonlinear SMC for Example 7.2, 2 curves coincide. 

 

7.7.3. Example 7.3: Tracking SISO Nonlinear System 

 Consider a system in Zhou  et al. 1992 which is modified with a reference output: 
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hence 

 u x x
t

x x x tx
t

eq     
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1 2
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7.7.3.1. Discontinuous SMC 

 By Theorem 7.3, a discontinuous SMC is determined by 
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Fig. 7.6:  Tracking Discontinuous Nonlinear SMC for Example 7.3. 

 

7.7.3.2. Continuous Pseudo-SMC 

 In the discontinuous control function above, let    sgn tanhs k ss  and choose ks  60 , then 
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Fig. 7.7:  Tracking TanH-Continuous Nonlinear SMC for Example 7.3. 
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7.7.3.3. Continuous SMC 

 By Theorem 7.4, a continuous SMC is determined by 

 u x x
t

x x x tx
t

s    






    














1 2
1

1
2

1

1
1

1

2 1 2 1
2

1 2
sin( ) .    

choose   4 , we have 

0 1 2 3 4
0

0.5

1

1.5

2

Time [s]

O
u

tp
u

t

0 1 2 3 4
-3

-2

-1

0

1

Time [s]

C
o

n
tr

o
l

0 1 2 3 4
-0.5

0

0.5

1

1.5

Time [s]

S
lid

in
g

Response  
Reference 

0.5 1 1.5 2
-0.6

-0.4

-0.2

0

0.2

0.4

Output

C
h

a
n

g
e

 o
f O

u
tp

u
t

Tracking Continuous SMC for Nonlinear System

 
Fig. 7.8:  Tracking Continuous Nonlinear SMC for Example 7.3. 

 

7.7.3.4. Performance 

 The performance of the continuous SMC is comparable to that of the continuous pseudo-SMC. 

 

7.7.4. Example 7.4: MIMO Nonlinear System 

 Consider a system in Chen  et al. 1992 
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thus 
 u M v Mg f 1     

hence 
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7.7.4.1. Discontinuous SMC 

 Theorem 7.7 yields 
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Fig. 7.9:  MIMO Discontinuous Nonlinear SMC for Example 7.4: Y1(0) = 1, Y2(0) = 0 
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Fig. 7.10:  MIMO Discontinuous Nonlinear SMC for Example 7.4: Y1(0) = Y2(0) = 1 

 

7.7.4.2. Continuous Pseudo-SMC 

 In the above discontinuous functions, let sgn tanhs k ss     and choose k ks s1 250 1000 ,  to have 
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Fig. 7.11:  MIMO TanH-Continuous Nonlinear SMC for Example 7.4: Y1(0) = 1, Y2(0) = 0 



7. General Sliding-Mode Controller Design for MIMO Uncertain Nonlinear Systems 7.21 

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Time [s]

O
u

tp
u

t

0 1 2 3 4
-6

-4

-2

0

2

4

Time [s]

C
o

n
tr

o
l

0 1 2 3 4
-0.5

0

0.5

1

1.5

2

Time [s]

S
lid

in
g

Subsystem 1 
Subsystem 2 

0 0.5 1
-1.5

-1

-0.5

0

Output

C
h

a
n

g
e

 o
f O

u
tp

u
t

TanH-Continuous SMC for MIMO Nonlinear System: Y1(0) = Y2(0) = 1

 
Fig. 7.12:  MIMO TanH-Continuous Nonlinear SMC for Example 7.4: Y1(0) = Y2(0) = 1 

 

7.7.4.3. Continuous SMC 

 Theorem 7.8 yields 
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Fig. 7.13:  MIMO Continuous Nonlinear SMC for Example 7.4: Y1(0) = 1, Y2(0) = 0 
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Fig. 7.14:  MIMO Continuous Nonlinear SMC for Example 7.4: Y1(0) = Y2(0) = 1 

 

7.7.4.4. Performance 

 The decoupling is effective as the second output is almost unaffected. The second output is essentially 

equal to zero if it is initially at zero and under no control. It goes to zero from an initial value if it is 

under control as required. 

 The performance of the continuous SMC is comparable to that of the continuous pseudo-SMC since for 
the latter, to eliminate the chattering completely, it is necessary to reduce the gain ks  further, but the 

steady-state error will be noticeable. This is consistent with Remark 3.5. 

 

7.7.5. Example 7.5: MIMO Nonlinear Robot Manipulators  

 Consider a robot system in Young 1978 
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7.7.5.1. Discontinuous SMC 

 Theorem 7.7 yields 
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Fig. 7.15:  MIMO Discontinuous Nonlinear SMC for Example 7.5: Y1(0) = 1, Y2(0) = 0 
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Fig. 7.16:  MIMO Discontinuous Nonlinear SMC for Example 7.5: Y1(0) = 1, Y2(0) = 1.5 

 

7.7.5.2. Continuous Pseudo-SMC 

 In the above discontinuous functions, let sgn tanhs k ss     and choose k ks s1 2 250   to have 
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Fig. 7.17:  MIMO TanH-Continuous Nonlinear SMC for Example 7.5: Y1(0) = 1, Y2(0) = 0 
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Fig. 7.18:  MIMO TanH-Continuous Nonlinear SMC for Example 7.5: Y1(0) = 1, Y2(0) = 1.5 

 

7.7.5.3. Continuous SMC 

 Theorem 7.8 yields 
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Fig. 7.19:  MIMO Continuous Nonlinear SMC for Example 7.5: Y1(0) = 1, Y2(0) = 0 
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Fig. 7.20:  MIMO Continuous Nonlinear SMC for Example 7.5: Y1(0) = 1, Y2(0) = 1.5 

 

7.7.5.4. Performance 

 The decoupling is effective as the second output is almost unaffected. The second output is essentially 

equal to zero if it is initially at zero and under no control. It goes to zero from an initial value if it is 

under control as required. 

 The performance of the continuous SMC is comparable to that of the continuous pseudo-SMC. 

 

 

7.7.6. Example 7.6: MIMO Uncertain Nonlinear Robot Arms 

 Consider a robot system in Fu  et al. 1990 
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 For the subsystem 1: 
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7.7.6.1. Robust Discontinuous SMC 

 Theorem 7.7 yields 
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Fig. 7.21:  Robust Discontinuous SMC for MIMO Uncertain Nonlinear System in Example 7.6:  

Ref_1 = 1.0, Ref_2 = 0 
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Fig. 7.22:  Robust Discontinuous SMC for MIMO Uncertain Nonlinear System in Example 7.6: 

Ref_1 = 1, Ref_2 = 1.5 
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7.7.6.2. Robust Continuous Pseudo-SMC 

 In the above discontinuous functions, let sgn tanhs k ss     and choose k ks s1 24 5 ,  to have 
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Fig. 7.23: Robust TanH-Continuous SMC for MIMO Uncertain Nonlinear System in Example 7.6: 

Ref_1 = 1.0, Ref_2 = 0: Steady-State Error 
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Fig. 7.24: Robust TanH-Continuous SMC for MIMO Uncertain Nonlinear System in Example 7.6; 

Ref_1 = 1, Ref_2 = 1.5: Steady-State Error 
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The design scheme in Proposition 3.3 with Err_Tol = 0.05 eliminates the steady-state error as follows 
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Fig. 7.25:  Robust TanH-Continuous SMC for MIMO Uncertain Nonlinear System in Example 7.6; 

Ref_1 = 1.0, Ref_2 = 0: using Proposition 3.3 with Err_Tol = 0.05 to eliminate Steady-State Error 
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Fig. 7.26:  Robust TanH-Continuous SMC for MIMO Uncertain Nonlinear System in Example 7.6; 

Ref_1 = 1, Ref_2 = 1.5: using Proposition 3.3 with Err_Tol = 0.05 to eliminate Steady-State Error 
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Remark 7.9: Steady-State Error due to Low Sliding Gain and Efficiency of Design Scheme (Proposition 3.3) 

 As expected in Section 3.5.5, low sliding gains cause steady-state errors using a sliding function to 

replace the switching function in eliminating the chattering; 

 The design scheme in Proposition 3.3 is efficient in eliminating these steady-state errors 

 

7.7.6.3. Performance 

 The decoupling is effective as the second output is almost unaffected. The second output is essentially 

equal to zero if it is initially at zero and under no control. It goes to desired position if it is under control as 

required. 

 

 

7.8. CONCLUSION 

 For a nonlinear system without perturbation, we can get a continuous SMC. But for a uncertain 

dynamical nonlinear system, we can get a continuous pseudo-SMC only. Note that the continuous pseudo-

SMC is also applicable to a nonlinear system without any perturbation, so we have got continuous pseudo-

SMC controllers for all numerical examples above to compare with available continuous SMC controllers, 

and we have found out that the difference is negligible. 
 

 For the general case, if the system Jacobian is non-singular, we can use the decoupling technique to deal 

with a MIMO in the unified manner as with a SISO. Otherwise, we have to use the complicated  Structure-

Algorithm (Silverman 1969)  and the error dynamic equation (Chen  et al. 1992). We have dealt with a 

system in Chen  et al. 1992 by using the simple decoupling technique where any perturbation can be taken 

into account. Note that this system has been considered by using the structure-algorithm in the above work 

where it is not clear how to take perturbations into account. 
 

 All the numerical examples above have the relative degree equal to the system order, so they are in the 

canonical form, thus the matching condition is satisfied, so the system stability is guaranteed by the stable 

hyperplane. If the relative degree is less than the system order, a stability test can be made for a linear 

system, but not for a nonlinear system. If this is the case, that nonlinear system should be linearized and a 

stability test can be done where the nonlinearity is considered as uncertainties. 
 

 A SMC design involves 2 design stages: hyperplane design and controller design. The hyperplane design 

is independent of the controller design because it is designed regardless the implementation of the controller 

in terms of its form (continuous SMC or  discontinuous SMC or  continuous pseudo-SMC). Based on the  

nominal model, a hyperplane is designed in such a way that it is stable, thus it is chosen to be linear with its 

Hurwitz eigenvalues, hence a  stable hyperplane even for a nonlinear system. Based on the  actual model 

where any potential perturbation is taken into account, a control function is designed in such a way that it 

satisfies the sliding condition to make the system states slide on the hyperplane even under perturbations. 

Only then the system is stable if the sliding mode is stable. 
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 For a linear or nonlinear  canonical system, the hyperplane is independent of the system parameters, so a 

stable hyperplane does guarantee the system stability. For a  linear system, if the matching condition is 

satisfied, then a stable hyperplane also guarantees the system stability; otherwise it is necessary to check if 

the sliding-eigenvalues are Hurwitz. For a  nonlinear system, it should be linearized in order to calculate the 

sliding-eigenvalues where the nonlinearity is considered as uncertainties, then it is necessary to check if the 

sliding-eigenvalues of the linearized system are Hurwitz in the operating range. Note that the invariance 

conditions  in Section 4.2 are valid for linear systems, not for nonlinear systems, because they are based on 

linear systems. It is crucial to note that the  invariance property is valid for both canonical linear and 

nonlinear systems, and for non-canonical linear systems satisfying the matching condition. This property 

means that the sliding dynamic is invariant to perturbations. For a linear system, the sliding-eigenvalues are 

of the actual model, while the hyperplane-eigenvalues are the desired sliding-eigenvalues of the nominal 

model. In other words, every actual model has its own sliding plane and if the invariance condition is 

satisfied then all these sliding planes coincide with the hyperplane, hence the invariance property. For 

canonical linear or nonlinear systems, there is only one hyperplane possible, so the invariance property must 

be implied. 
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Chapter  8 

 
Advanced Sliding-Mode  Controller Design:  

Experimental  Results 
 

8.1. INTRODUCTION 

     In this chapter, results from experiments of Ball-Hoop system are presented to validate our anticipations 

in theory such as infinite gain of the switching function may cause excitation of unmodelled high-frequency; 

performances of the saturate, unitvector and hyperbolic tangent functions; performances of continuous SMC, 

continuous pseudo-SMC (Tanh SMC) and sliding-mode fuzzy control. 
 

 One of the consequences of the trend towards the high speed transportation of bulk liquids is that the 

influence of the cargo upon the vehicle must be fully accounted for. This has always been true in the static 

sense, but in recent years the dynamical interaction between the material being transported and its container 

has grown in importance. In fact, the behaviour of a vehicle during a manoeuvre is very often a joint 

function of the liquid cargo and vehicle dynamics. This problem, referred to as "liquid slop", is known to be 

a problem in: 

(i)   High speed road and rail transport of bulk liquids 

(ii)  Maritime transportation, especially in oil tankers 

(iii) Liquid fuelled missiles 

 

     Actually, "liquid slop" is not confined to vehicular transport, any arrangement which involves the rapid 

movement of large quantities of fluid can exhibit the characteristic oscillations which are associated with 

"liquid slop". The pumping of concrete in the civil engineering and building industry is a fair example. 

 

     An essential aim of the Ball-Hoop system is to illustrate the dynamical behaviour and control problems 

associated with liquid slop. In particular, if a cylindrical vessel is considered, then to a first approximation, 

the essential dynamical character of liquid movement in the cylinder (Fig. 8.1.a) is captured by the motion of 

a body rolling inside a hoop (Fig. 8.1.b). 
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Liquid Ball

a) Cross-section through a Cylindrical Vessel b) Ball rolling inside a Hoop

Cylindrical Vessel Hoop

 
Fig. 8.1: Ball-Hoop motion 

 

8.2. SYSTEM DESCRIPTION 

 In the system the vehicle motion is introduced by allowing the hoop to rotate under the action of a direct 

drive servo-motor, while the liquid motion is modelled by the oscillations of a ball rolling in the inner 

periphery of the hoop. 
 

 The Ball-Hoop system consists of  a D.C. servo-motor which is equipped with an integral tachometer and 

a hoop angular position transducer mounted in a vertical frame. A large annular hoop is directly fixed to the 

motor shaft and constitutes an inertial load on the motor. A metal ball is placed inside the hoop so that it rolls 

in the groove on the inner periphery of the hoop. The ball angular position is measured using a potentiometer 

as the ball position transducer mounted on the front of, and coaxial with, the hoop. A wiper assembly is 

connected to the potentiometer shaft and registers on the ball via a yoke. This provides a measurement of the 

angular deviation of the ball from vertical, which is referred to as the "slop angle". 
 

Motor Hoop Ball

Tacho-
Generator

Hoop Angle
Transducer

Slop Angle
Transducer

Vin

VH
VH VB

BHH

 
Fig. 8.2: Block diagram of the Ball-Hoop system 

where 

    B : Angular deviation of the ball from the vertical (slop angle) 

    H : Angular position of the hoop 

    H  : Angular velocity of the hoop 
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8.3. INSTRUMENTATION 

 The instrumentation box has 

  1 input :        Servo-motor drive voltage 

  3 outputs:  (i)   Hoop velocity signal, derived from tachometer 

                       (ii) Hoop angular position signal, derived from the rotary position transducer 

         attached to the rear motor shaft 

      (iii) Ball angular position signal, referred to as the "slop angle", derived from the 

          rotary potentiometer mounted in front of the hoop. 
 

Slop Angle
Transducer Motor Tacho-

Generator
Hoop Angle
Transducer

Motor Drive
Input

Motor
Input Preset

Slop Angle
Preset Slop Angle

Output

Hoop Velocity
Output

Hoop Angle
Output

Hoop
AnglePreset

Hoop

Ball

 
 

Fig. 8.3: Instrumentation box 
 

 The instrumentation associated with the Ball-Hoop system is typical of that found in D.C. servo position 

control system. Namely, 

(i)   A D.C. servo-motor 

(ii)  Tacho-generator 

(iii) Angular position transducer 
 

 In addition, the system is equipped with a rotary potentiometer for measuring the angular deflection of 

the ball. 
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8.4. SYSTEM IDENTIFICATION 

 A theoretical and practical system identifications will be presented in this section. In the theoretical 

method, based on only one typical actual response from some experiments, a model verification will be used 

to identify all unknown model parameters to obtain a system model. The practical method has been presented 

in Chapter 6 where the fuzzy inference has been used to obtain a system model based on numerous actual 

responses from some experiments, this is a fuzzy modelling. 

 

8.4.1. Theoretical System Identification 

 

R

r

rb


B

H

 
Fig. 8.4: Description of Ball-Hoop Dynamics 

where 

 Ia: Moment of Inertia of the Hoop 

 Ib: Moment of Inertia of the Ball 

 Mb:  Mass of the Ball 

 Bb: Coefficient of Rolling Friction of the Ball 

 Bm: Coefficient of Rotational Friction of the Motor Assembly 

 Th: Torque 

 R: Radius of the Hoop 

 r: Radius of the Ball 

 B: Ball angle against the vertical axis 

 H: Hoop angle against vertical axis 
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 We will use Lagrange approach to derive theoretically a mathematical model of the system using the 

following extended Lagrangian equations 

 d
dt

L
q

L
q

J
q

F L T U
i i i

i







 

,








       (8.1) 

where 

 T : total co-kinetic energy 

 U : total potential energy 

 J : total co-content energy 
 qi  : generalized coordinate 
 

 Equation for the transformation of coordinates: 

    
R
r

H B  (8.2) 

 Translational velocity of the Ball 
 v R r B ( )   (8.3) 

 The hoop rotates only, but the ball rotates and translates as well. The total co-kinetic energy of the system 
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 Eqs.(8.2) and (8.3) give 
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 The total potential energy of the system: 
    U M g R r Bb  . . cos1  (8.6) 

 For the ball and hoop, although the ball translates, there is no translational friction for the ball. The total 

co-content energy of the system 
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 Eq.(8.2) yields 
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 Hence the system Lagrangian equations are 
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then 
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and 
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(2) q B2   
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8.4.1.1. Ball-Hoop Transfer Function 

 Assume that 
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 (8.13) 

where g = 9.81 m/s2 
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 By a simple measurement of Hoop radius: R = 8.75 cm 
 

 In fact,  r  0.70 cm, so R >> r as the above assumption 

       rb  0.75 cm, so rb  r as the above assumption 
 

 From Eq.(8.13): 
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where : 
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 Hence 
 n rad s 80 8 944. /   

Let 
 A n7 2 17 888 18    .  (8.16) 

where :   is Damping Factor 
 

 So  
   A A5 7 5 7 25    (8.17) 

and Eqs.(8.14) & (8.15) give 
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Eq.(8.13) yields 
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 (8.19) 

 

 Therefore, with only 1 simple measurement, we have got the transfer function with only 1 unknown  : 

Damping Factor. 

 

8.4.1.2. DC Servo Motor Transfer Function 

 A servo motor has a transfer function as 
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 (8.20) 
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8.4.1.3. Model Verification 

 We first consider each motor and ball subsystems separately, then combine them to see the effect of 

interactions. 

 

(a) Separated System 

 Using a step of 2, we obtain the following model for the motor 

  G s
s sm 



1 05

1 5
85.

.
 (8.21) 
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Fig. 8.5: Modelling Motor Subsystem 

and for ball-hoop subsystem 

    G s s
s sb

* .
.




 
0 3 1

0 72 812  (8.22) 

it is very close to Eq.(8.18) where   0 04. . 
 

(b) Combined System 

 The ball-hoop subsystem is driven by the motor, due to interaction between them, the ball-hoop 

subsystem is modified to be 

  G s s
s sb 


 

2 5
0 84 110

2

2
.

.
 (8.23) 

Note the different numerators in Eqs. (8.22) & (8.23). 
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Fig. 8.6: Modelling Individual Ball-Hoop Subsystem 
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Fig. 8.7: Ball-Hoop Model by a Typical Step Response 

 

8.4.2. Practical System Identification 

 From Chapter 6, a fuzzy model is found as 
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Fig. 8.8: Fuzzy Model of Ball-Hoop System 
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8.5. DIGITAL SLIDING-MODE CONTROLLER-OBSERVER DESIGNS 

 All sliding-mode controllers (SMC) will be designed and implemented: switching discontinuous SMC, 

saturate and tanh pseudo-continuous SMC, linear continuous SMC, and sliding-mode fuzzy controller. The 

Ball-Hoop system is an 4-th order system, however there are only 3 states available: hoop position , hoop 

velocity (tacho) and ball position. An observer is thus required to estimate the missing ball velocity and this 

observer will be used for all types of SMC. A PC and an ADC card will be used to implement controller-

observer, so discrete-time controller-observer will be designed. 

 

8.5.1. Robust Sliding-Mode Observer Design 

 For the model whose system states defined in Fig.8.8, a state-space model is 
    

~ ~x A A x B B     u   

where 
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and the observer equation is 
        ~ ~.~ . .x A x B Lk k u k y kd   1   

 This observer equation will be used to estimate the ball velocity for all the following SMC's. 
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8.5.2. Robust Sliding-Mode Controller Designs 

 All controller types will use the same hyperplane above. 

 

8.5.2.1. Robust Switching SMC 

 We have 
  K p  0 0 0596 0 6580 0 0002. . .   

choose   6 , then 
  K r  0 4151 0 7057 12 1223 0 0241. . . .   

then the simulation results are 
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Fig. 8.9: Robust Switching Sliding-Mode Controller-Observer Design for Ball-Hoop System 
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and the experimental results are 
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Fig. 8.10: Experimental Results of Robust Switching Sliding-Mode Controller-Observer for Ball-Hoop System 

 

Remark 8.1: Excitation of Unmodelled High-Frequency due to Switching Function 

 Due to infinite gain of switching function, the unmodelled high-frequency dynamics are excited to cause 

oscillations. 
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8.5.2.2. Robust Saturate SMC 

 Controller parameters are the same as the switching SMC above where 
    sign sat , ,s s k ks s  30   

then the simulation results are 
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Fig. 8.11: Robust Saturate Sliding-Mode Controller-Observer Design for Ball-Hoop System 
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and the experimental results are 
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Fig. 8.12: Experimental Results of Robust Saturate Sliding-Mode Controller-Observer for Ball-Hoop System 

 

Remark 8.2: Slow-Down System Response due to Low Sliding Gain 

In experiments, the sliding gain has to reduce to 0.3 for alleviating the chattering and the system is slow 

down due to this lower gain as expected in theory (Section 3.5.5) 
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8.5.2.3. Robust Unitvector SMC 

 Controller parameters are the same as the switching SMC above where 
    sign smt , ,s k s ks s  120   

then the simulation results are 
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Fig. 8.13: Robust Unitvector Sliding-Mode Controller-Observer Design for Ball-Hoop System 
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and the experimental results are 
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Fig. 8.14: Experimental Results of Robust Unitvector Sliding-Mode Controller-Observer for Ball-Hoop System 
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8.5.2.4. Robust TanH SMC 

 Controller parameters are the same as the switching SMC above where 
    sign tanh ,s k s ks s  50   

then the simulation results are 
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Fig. 8.15: Robust TanH Sliding-Mode Controller-Observer Design for Ball-Hoop System 
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and the experimental results are 
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Fig. 8.16: Experimental Results of Robust TanH Sliding-Mode Controller-Observer for Ball-Hoop System 
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Remark 8.3: Performance of Saturate and TanH SMC 

 As mentioned in Section 3.5.5, the sliding gain of a TanH SMC can be larger than that of a Saturate 

SMC. In this experiment, this gain has been chosen 50 for TanH SMC and 30 for Saturate SMC, thus the 

system response of TanH SMC is faster than Saturate SMC. 

 

8.5.2.5. Robust Linear SMC 

 We have 
  K p  1 4101 31323 47 4146 0 0932. . . .   

choose   14 , then 
  K r  0 9686 1 6466 28 2853 0 0563. . . .   

thus 
  K  2 3787 5 2431 79 5329 0 0293. . . .   

then the simulation results are 
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Fig. 8.17: Robust Linear Sliding-Mode Controller-Observer Design for Ball-Hoop System 
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and the experimental results are 
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Fig. 8.18: Experimental Results of Robust Linear Sliding-Mode Controller-Observer for Ball-Hoop System 

 

Remark 8.4: Experimental Performance of Pseudo-SMC (Unitvector & TanH SMC) and Linear SMC 

 The system responses are comparable, however the control effort of Pseudo-SMC is smaller. 
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8.5.2.5. Robust Sliding-Mode Fuzzy Controller 

 By the design rule proposed in Corollary 6.4, choose 
   8 0 1, .i   

and choose 5 fuzzy rules with fuzzy parameters as 
 s s u        1 5 0 5 0 0 5 1 5 1 5 0 5 0 0 5 1 5 10 5 0 5 10. . , . . ,.37 .37 .37 .37i   

then the simulation results are 
 

Lower Bound 
Upper Bound 

0 1 2 3
-5

0

5

10

Time [s]

C
o

n
tr

o
l

0 1 2 3
-0.3

-0.2

-0.1

0

0.1

Time [s]

S
lid

in
g

0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

Time [s]

B
a

ll

Robust Fuzzy Sliding-Mode Controller-Observer for Ball-Hoop System

0 1 2 3
0

1

2

3

4

5

Time [s]

H
o

o
p

 
Fig. 8.19: Robust Fuzzy Sliding-Mode Controller-Observer Design for Ball-Hoop System 

 

Remark 8.5: Execute Time of Digital Controllers 

 The execute time of the sliding-mode fuzzy controller is about 1.17 mS using Turbo Pascal 7 on a PC 

486DX-66, while that of others is about 1.1 mS. The controller can be thus completed within 1 sample of 5 

mS. 
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and the experimental results are 
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Fig. 8.20: Experimental Results of Robust Fuzzy Sliding-Mode Controller-Observer for Ball-Hoop System 
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8.6. CONCLUSION 

 By this experiment we can see the real danger of the switching SMC where it has excited the unmodelled 

high-frequency. Note that there are some oscillations in the switching SMC controller while it is not the case 

for other SMC controllers. The limitation of Saturate SMC is its low gain to slow down the response due to 

the longer reaching mode, as expected in theory. We have attempted with both the saturate and TanH SMC 

to reduce the gain from infinite gain of the switching SMC. As expected, the performance of the TanH SMC 

is better than that of the saturate SMC because for the TanH SMC, the higher sliding margin is, the lower 

gain is; so the oscillation is harder to exist and there is no steady-state error. In other words, the saturate 

SMC has the upper bound for the sliding margin low enough to slow down the response even with the same 

fast eigenvalues as in the TanH and linear SMC. 
 

 All the experimental results are consistent with the proposed theoretical results, such as the excitation of 

unmodelled high-frequency by a discontinuous SMC control function, the performances of  a saturate and 

TanH SMC control functions (steady-state error, slow-down response), the performances of a saturate SMC, 

a TanH SMC and a linear continuous SMC in eliminating the chattering problem. 
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Advanced Sliding-Mode Controller Designs: Conclusion 
 

 

 In the sliding-mode control theory, control dynamics have 2 sequential modes, the first is the reaching 

mode and the second is the sliding mode. The Lyapunov sliding condition forces system states to reach a 

hyperplane and keeps them sliding on this hyperplane, so a SMC design is composed of 2 phases, 

hyperplane design and controller design. First, a hyperplane is designed via the pole-placement approach 

as in the state-space control, then a controller design is based on the sliding condition. The stability is 

guaranteed by the sliding condition (Lyapunov Stability Criterion Theorem) and by a stable hyperplane 

(stable designer-chosen pole-placement). In the reaching mode, the control dynamics depend on system 

parameters; but in the sliding mode they depend on the hyperplane, this is the invariance property of the 

sliding mode. On this basis, the design rule (Section 3.4) has been proposed to guarantee the reaching 

mode terminate in a finite time for the existence of the sliding mode. In addition, the modified design 

(Corollary 3.2) has been presented to include system dynamics into the reaching control to reinforce this 

guarantee. 

 

 We have identified the sliding-eigenvalues and the hyperplane-eigenvalues. These 2 eigenvalue types 

are of reduced-order for both linear and nonlinear systems. The sliding-eigenvalues determine the system 

dynamics in the sliding mode. The hyperplane-eigenvalues are the desired sliding-eigenvalues for a 

sliding hyperplane of a certain model which is usually chosen to be the nominal one. In other words, the 

hyperplane-eigenvalues represent the desired sliding plane on which the state variables are expected to 

slide. 

 

 The stability criterion proposed in Section 3.2 is much simpler for practical tests than the works in 

Utkin 1992, Itkis 1983. This stability approach has been extended to nonlinear systems in Corollary 7.1. 

To complete the work in Drazenov 1969, a sufficient invariance condition has been presented in Theorem 

4.1 and 4.2. 

 

 For the discontinuous SMC well-known as VSS, a new reaching controller design in Corollary 3.2 

includes the system dynamics to reinforce the guarantee for the existence of the sliding mode to enhance 

the invariance property. The proposed robust VSS design approach in Section 4.3 is much simpler than 

the current approach (Edwards et al. 1996) and applicable for MIMO uncertain nonlinear systems in 

Section 7.3.2 (Fu 1992). 

 

 The main limitation of VSS is the chattering problem. The analysis of the chattering problem 

presented in Section 3.5 is more precise than the work in Slotine 1983, its development to use the saturate 

and unitvector functions is in a unified manner (Saturate function in Slotine 1983, Unitvector function in 

Ryan et al. 1987, Spurgeon 1993) and much simpler than the work in Ryan et al. 1987 and Spurgeon 
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1993. The hyperbolic tangent function has been proposed to solve the chattering problem more 

convenient since it is a standard mathematical function. Its performance is better than those of saturate 

and unitvector function. The performances of sliding functions (saturate, unitvector and TanH functions) 

have been analyzed in detail (Section 3.5.5) and consistent with experimental results in Chapter 8. A 

steady-state error may occur in using a sliding function to eliminate the chattering, Proposition 3.3 

completely solves the chattering problem and its consequence (steady-state error). 

 

 The proposed analysis of continuous SMC has been used to explore the true nature of SMC including 

the invariance property and the stability problem. The control function is not only continuous but also 

linear. The continuous nature of this control function helps to eliminate the chattering problem in the 

discontinuous SMC. The advantage of the control function being linear is that some fundamental 

concepts of SMC design can be explained from the linear control theory framework. In the current SMC 

literature, a continuous SMC has been presented in DeCarlo et al. 1987 and Zhou et al. 1992, but the 

robust continuous SMC has been considered only in Zhou et al. 1992. The followings are some main new 

features compared to the work in Zhou et al. 1992: 

 the negative of a sliding margin and the hyperplane-eigenvalues are the closed-loop system 

eigenvalues for linear systems under no perturbation. This concludes the fact that a sliding margin 

plays a key role in the reaching mode. If this absolute value is larger, the sliding mode is more 

dominant; 

 under matching perturbations, the negative of a sliding margin and the hyperplane-eigenvalues are 

the closed-loop system eigenvalues for linear systems at one boundary. This may be used to estimate 

the control performance; 

 the control function is linear continuous for linear systems with or without perturbations, and for a 

certain class of nonlinear systems. In the SMC literature, the control function is linear continuous for 

linear system without perturbation, but it is non-linear for linear systems under perturbations; 

 

 For the fuzzy control, we have proved that a typical fuzzy rulebase can satisfy the Lyapunov sliding 

condition so the stability of a fuzzy control is guaranteed by the Lyapunov stability theorem. This is a 

stability criterion for the fuzzy control theory. We have presented a proposition for a fuzzy control 

structure applicable to slow and fast systems. 

 

 To design a stable sliding-mode fuzzy controller, a fuzzy mechanism is used to minimize a sliding 

variable s instead of using the sliding condition as in the sliding mode control, so we can obtain the 

invariance property of the sliding mode. In a typical fuzzy rulebase, it may not be convenient to use more 

than 2 entries, we can use 1 entry for s and the other for sum of s, and hence a possible steady-state error 

may be eliminated by this I-action. 
 

 In a fuzzy control, the problems are how to choose the gains for error and its change; and a possible 

chattering (limit cycle). In the current fuzzy control literature, these gains are chosen by trial and error or 
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chosen unity without justification, and the unit circle is used to analyze the chattering, not to solve this 

problem. Using the sliding-mode control theory, these gains can be determined by a hyperplane and the 

chattering problem can be solved since the system dynamics are included through these gains. 
 

 On the basis of the fuzzy identification in Tanaka et al. 1992 and Ishigame et al. 1993, we develop a 

new fuzzy identification scheme which is simpler and more practical. The fuzzy inference will be used to 

obtain the most potential model from some rough mathematical models from experiments using a 

proposed practical system identification. Due to the robustness, a rough system model is required rather 

than an elaborate mathematical model as in a conventional control, a practical system identification is 

presented for this purpose. A fuzzy model by the proposed scheme can be a solution to the conservative 

problem. 

 

 For a general class of uncertain nonlinear systems, a continuous pseudo-SMC may be used to 

eliminate the chattering problem. In fact, this continuous pseudo-SMC is a discontinuous SMC design 

where a switching function is replaced by a sliding function. Strictly speaking, a pseudo-SMC is not the 

sliding mode within a boundary layer, but the fact that the sliding mode exists asymptotically, so the 

difference between a SMC and a pseudo-SMC is not noticeable. 

 

 A general case in SMC has been developed where an output is a nonlinear function of state variables 

for multi-input multi-output (MIMO) systems. A hyperplane has been derived from the direct allocation 

method rather than from the input/output linearization technique (Hunt  et al. 1983, Isidori 1985, 

Kravaris  et al. 1986) as in the SMC literature (Fernandez  et al. 1987; Chen  et al. 1992). Since the SMC 

can deal with nonlinear systems conveniently, tracking control problems can be solved without 

difficulties. For a MIMO SMC, the hierarchical control technique has been used in Utkin 1977 for linear 

systems. Alternatively, we have used a decoupling technique which is applicable for MIMO nonlinear 

systems. This technique allows a MIMO can be considered as a collection of SISO subsystem, therefore 

all our proposed SISO results have been applicable. This technique has been applicable for a certain class 

of uncertain dynamical MIMO systems (section 7.7.6). 

 

  All the experimental results are consistent with the proposed theoretical results 

 the excitation of unmodelled high-frequency by a discontinuous SMC control function;  

 the performances of a saturate ,unitvector, TanH and linear SMC in eliminating the chattering 

problem in terms of steady-state error, slow-down response. A linear continuous SMC is free from 

these 2 disadvantages; 

 



 

Appendix 
 

 

A.1. EIGENVALUES, AND SIMILARITY TRANSFORMATION 

 

A.1.1. Eigenvalues of a square matrix 
 eig    A I A A        i

n n0 ,  (1.1) 

 

A.1.2. Similarity Transformation 
 The matrices A B,  n n  are said to be similar if a non-singular matrix P exists such that 

 P A P B A P BP   1 1. .  (1.2) 

 The eigenvalues are invariant under a similarity transformation, suppose that 

 P A P A 1 .   

then 
 B P A P P A P A P P A P P A I A        1 1 1 1. . . . . . .   

and 
      I B I P A P P I P P A P P I A P P I A P I A              1 1 1 1 1. . . . . .      

 

A.2. POLE-PLACEMENT METHOD 

 

A.2.1. Problem Statement 

 Consider a linear system 

  .x Ax B  u  (2.1) 

under a control function 

 u  Kx (2.2) 

then 
  .x A BK x    (2.3) 

where desired closed-loop poles are 
 eig A BK P   p p pn1 2, , ,   (2.4) 

 The problem is to find K satisfying Eq.(2.4). We define a procedure place as follows 

 
 .

, ,
x A BK x

A BK P
K A B P

 

 


 

   
eig

place  (2.5) 

where this procedure can be determined by a couple of techniques in the literature. Among them is the 

Ackermann' formula which is the simplest one and applicable to SISO systems only. To illustrate the 

procedure place above, the following is a derivation of the Ackermann's formula. 
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A.2.2. Ackermann's Formula (Ogata 1987) 

 Let 
 A A BKf    (2.6) 

 Since the Caley-Hamilton Theorem states that Af satisfies its own characteristic equation, we have 
 A A A A I A 0f

n
f
n

f
n

n f n f       
   1

1
2

2
1 P    (2.7) 

hence 

 

I I

A A BK

A A BK A ABK BKA

A A BK A A BK ABKA BKA



 

    

     

f

f f

f f f

2 2 2

3 3 3 2 2

 
 

  

 

A A BK A A BK A BKA ABKA BKA

A A BK A A BK A BKA A BKA ABKA BKA

A A BK A A BK BKA

f f f f

f f f f f

f
n n n n

f
n

4 4 4 3 2 2 3

5 5 5 4 3 2 2 3 4

1 1

      

       

      

 
 

 
.   .   .



  

 
Multiply by   n n, , , ,1 1 1 , respectively: 

 
         

  
n n f n f f

n
n n n n

n
n n n f

n n f n f
n

f
n

I A A A I A A A A BK ABK BKA

A BK ABKA BKA A BK BKA

            

      
       

  
 

1 2
2

1 2
2

3
3

1 2 2

3
2

3 3
2 1 1

 

                                                       
 

or equivalently 
 P PA A B K AB K B KA A B K AB KA B KA A B K B KAf n n n f n n f n f

n
f
n                                  

      1 2 2 3
2

3 3
2 1 1
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K

f
n

n n f f
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1

1 2
1

2 3
2

.

 

 
  

with 
 P A 0f    (2.8) 

and 
 M B AB A Bc

n  1  : Controllability Matrix (2.9) 

then 

 P ( )A M

K KA KA

K KA KA

K



  

  













 


 


c

n n f f
n

n n f f
n

 

 
1 2

1

2 3
2






 (2.10) 

if Mc is invertible (controllable), then 
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n n f f
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Premultiplying both side by 0 0 0 1, , , ,  

 0 0 1 0 0 1

1 2
1

2 3
2

1







. . ( )

 

 
n n f f

n

n n f f
n

c

 


 




  

  















K KA KA

K KA KA

K

M A.P  (2.12) 

 Therefore, the procedure place in Eq.(2.5) calculates K by the Ackermann's formula as follows 
 K M A 0 0 0 1 c

1 . ( )P  (2.13) 

 

A.3. MATRIX OPERATIONS 

 

A.3.1. Differentiation and Derivative of a Matrix 

 

A.3.1.1. Differentiation 

 d d dA B A B     (3.1) 

 d d dAB A B A B   . .  (3.2) 

Eq.(3.2) gives 
 0 I A A A A A A     d d d d. . .1 1 1     

thus 
 d dA A A A   1 1 1  . .  (3.3) 

 

A.3.1.2. Derivative 

 d
dt

V t V d
dt

T

x
x

x    








 (3.4) 
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x
  




 


 


 


 


 


 







 

 

A.3.1.3. Jacobian 

   












f f

x















f
x

f
x

f
x

f
x

m

n

m

n

1

1 1

1



  



 (3.5) 
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x Ay Ay
y
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A.3.2. Trace of an nn Matrix 

  tr A  

aii
i

n

1

 (3.6) 

 
(i) tr tr                     tr trA A A AT T         ,  (3.7) 
 
(ii) tr A B A B       tr tr  (3.8) 
 
(iii) tr AB BA    tr  (3.9) 
 
(iv) tr trM AM A 1     (3.10) 
 
(v) x Qx xx Q QxxT T T tr tr    (3.11) 
 
(vi) tr tr tr trAX XA A X X A         T T T T  (3.12) 
 

 Trace operator is unchanged under : swap, transpose (each individually). 

 

A.3.3. The Caley-Hamilton theorem 

 Let A be square matrix, and let 
 s s sn n

nI A     1
1
  (3.13) 

then 
 A A I 0n n

n    1
1
  (3.14) 

 

A.3.4. Inversion of Matrices 

 

A.3.4.1. Nonsingular Matrix and Singular Matrix 

 A square matrix A is called a nonsingular matrix if a matrix B exists such that 

 BA AB I    
If such a matrix B exists, then it is denoted by A 1 . A 1  is called the inverse of A. The inverse matrix A 1  

exists if A  is nonzero. If A 1  does not exist, A is said to be singular. 

 If A and B are nonsingular matrices, then the product AB is a nonsingular matrix and 
 AB B A   1 1 1  (3.15) 

Also 
 A AT T    

1 1  (3.16) 

 For a 2 2  matrix A, where 

 A A






  
a b

c d
ad bc, 0   

the inverse matrix is given by 

 A
A

A 





















1 11 d b

c a

d b

c a
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A.3.4.2. Matrix Inversion Lemma 

 If A, B, C and D are, respectively, an n n , an n m , an m m  and an m n  matrix, then 
 A BCD A A B C DA B DA            1 1 1 1 1 1 1  (3.17) 

provided the indicated inverses exist. 

 

A.3.4.3. Block Matrix Inversion 

 If A, B, C and D are, respectively, an n n , an n m , an m n  and an m m  matrix, then 

 
A B

C D

A A B D CA B CA A B D CA B

D CA B CA D CA B








   

  











        

    

1 1 1 1 1 1 1 1 1

1 1 1 1 1

   
   

,

,
 (3.18) 

provided A  0  and D CA B 1 0 , or 

 
A B

C D

A BD C A BD C BD

D C A BD C D C A BD C BD D








  

   











     

       

1 1 1 1 1 1

1 1 1 1 1 1 1 1

   
   

,

,
 (3.19) 

provided D  0  and A BD C 1 0  

 In particular, if C 0  or B 0 , then Eqs.(3.18) and (3.19) can be simplified as follows 

 
A B

0 D

A A BD

0 D

















   



1 1 1 1

1

,

,
 (3.20) 

or 

 
A 0

C D

A 0

D CA D


















 

  

1 1

1 1 1

,

,
 (3.21) 

 

A.3.5. Gradient Matrices and Frechet Derivative Operator. (H. P. Geering, AC-21/8, 1976) 

 

A.3.5.1. Frechet Derivative Operator. 

 Consider a scalar-valued function  f R Rn mX :    

 f TX A X    tr   

then the First Frechet derivative at X with increment dX is 
 df d d dT TX X A X X A,      tr tr   

and the First Frechet derivative at X with respect to X is 

 






f
f

f
xij

X
X

X
X

A
     

 






 

'   
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A.3.5.2. Rule for Differentiating Functions Involving the Trace Operator 
 
 Consider f R Rn m :     of the form f gX X    tr , where g R Rn m r r  :   , g is a matrix polynomial 

in X. The First Frechet derivative at X of f X  is obtained as followed 

(1) Differentiate separately each term of the polynomial 

(2) For each term, form the partial Frechet differential for each factor X separately by placing it by dX. To 

each partial differential, apply Id.(vi) until d TX  appears at the extreme left. Hence, each partial differential is 
of the form tr d TX M   for some M  Rn m . The partial derivative corresponding to this partial differential is 

M. 
(3) The derivative f ' X   is obtained by summing over all of the partial derivatives of all of the terms of the 

polynomial. 

 

A.3.6 Some Gradient Matrices. (M. Athans, Inf. Ctl. 11, 1968) 

 The followings are derivations of some gradient matrices in Athans 1968 by using the above Frechet 

derivative operator 
 

(1) 


X
X I X Xtr tr  f     

 df d d d fTX X X X I X I, '      tr tr   
 

(2) 


X
AX A X AXtr tr  T f     

 df d d d fT T TX X A X X A X A, . '      tr tr   
 

(3) 


X
AX A X AXtr trT Tf      

 df d d d fT TX X A X X A X A, . '      tr tr   
 

(4) 


X
AXB A Btr  T T   

 f df d d d fT T T T TX AXB X X A X B X A B X A B            tr tr tr, . . . ' .   
 

(5) 


X
AX B BA X AX Btr trT Tf      

 df d d d d d fT T T TX X A X B B A X B A X X B A X B A, . . . . . . . ' .                tr tr tr tr   

 

(6) 


X
AX A

T
tr    

 






X
AX A

X
AX Atr tr  T

T
  

 

(7) 


X
AX A

T
T Ttr    

 






X
AX A

X
AX Atr trT

T
T T     
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(8) 


X
AXB BA

T
tr    

 






X
AXB A B

X
AXB BAtr tr  T T

T
  

 

(9) 


X
AX B A B

T
T T Ttr    

 






X
AX B BA

X
AX B A Btr trT

T
T T T     

 

(10) 


X
XX X X XXtr tr  2 T f     

 df d d d d dT T T TX X X X X X X X X X, . . . .     tr tr tr tr   

 f T T T' X X X X     2   
 

(11) 


X
XX X X XXtr trT Tf  2     

 df d d d d dT T T TX X X X X X X X X X, . . . .     tr tr tr tr   

 f ' X X X X     2   
 

(12) 


X
X Xtr n n T

n 1    

 

(13) 


X
A X X A Xtr . . .n i n i

i

n T








 





 1

0

1

  

 

(14) 


X
AXBX A X B B X A X AXBXtr tr   T T T T T T f     

 
df d d d d d

f

T T T T T T T T

T T T T T T

X X A X BX AXB X X A X B X B X A

X A X B B X A

, . . .

'

   
 

   

 

tr tr tr tr
  

 

(15) 


X
AXBX A XB AXB X AXBXtr trT T T Tf       

 
df d d d d d

f

T T T T T T

T T

X X A X BX AXB X X A XB X AXB

X A XB AXB

, . . .

'

 
 

   

 

tr tr tr tr
  

 

(16) 


X
X Xtr e e

T

   

 f e
k

kX I X X XX        



tr tr 1

2
12

! !
    

 df d d d d
k

d d e d d ek k T T

X X 0 X X X X X X X X X X XX X,
!

. .
!

.             



   tr tr tr1

2
1 1 1     

 

(17) 


X
X X X Xtr       1 1 1 2   T T

  

 
d d d d d d

f df d d d d T T T

X X I X X X X X X X X

X X X X X X X X X X X

     

     

      

       





1 1 1 1 1 1

1 1 1 1 1 1

0       

         

.

, .tr tr tr tr
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(18) 


X
AX B X BAX X AX Btr tr      1 1 1 1   T

f   

df d d d d d

f

T T T T T

T

X X A X B AX X X B X AX X B X X BAX

X X BAX

, . .

'

         

   

     



   







      

 

tr tr tr tr1 1 1 1 1 1 1

1 1

 

 

A.4. SOME PROPERTIES OF A DETERMINANT 

 The determinant of an n n  matrix has the following properties: 

1. If 2 rows (or 2 columns) of the determinant are interchanged, only the sign of the determinant is changed. 
 

2. The determinant is invariant under the addition of a scalar multiple of a row (or column) to another row 

(or column). 
 

3.  If an n n  matrix has 2 identical rows (or columns), then the determinant is zero. 
 

4.  For an n n  matrix A, 
 A AT    
 

5.  The determinant of a product of 2 square matrices A and B is the product of their determinants: 
 A B A B B A. . .    
 

6.  If a row (or column) is multiplied by k, then the determinant is multiplied by k. 
 

7.  If all elements of an n n  matrix are multiplied by k n ; that is 
 k k n. A A   
 
8.  If the eigenvalues of A are i i n,     1, , then 

 A    1 2 n   

 Hence A  0 implies i i n  0 1, ,    
 
9.  If matrices A B C D      n n n m m n m m, , ,  and , then 

 
A B
C D

A D CA B A

D A BD C C


 

 









. ,

. ,

1

1

0

0

   if  

   if  
          

A B
0 D

A 0
C D

A D  .   

 
10. For an A B  n m m n,  

 I AB I BAn m             I AB BAn m   1 1,    for    
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A.5. LIE ALGEBRA. (A. Isidori 2ed. 1989). 

 

A.5.1. Covector Field Differential 

 The CoVector field differential, or gradient d : (x) : Real-Valued function 

 d
x x xn














x
x

   




1 2

  (5.1) 

to be mathematically precise 

 d d d
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i   



x x x x x            .   
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A.5.2. First Type of Differential Operation 

 Lie Differentiation : Derivative of a real-valued function   along the vector fields f 
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 (5.2) 

 For a repeated differentiating 
 L L L L Lg f g f fx x g x             .  (5.3) 

or in a recursion 
 L L L Lk k k

f f f fx f x x            1 1.  (5.4) 

where 
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A.5.3. Second Type Differential Operation 

 Derivative of a CoVector field along a Vector field, compare to (2) for a Scalar instead of a Vector. 
 L T T T

f x f x x f          . .  (5.5) 
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A.5.4. Third Type of Differential Operation 

 Lie bracket (Lie product) of both Vector fields f,g  
 f g x g f x f g x, . .         (5.6) 

for a repeated bracketing  f f f g, , ... , , , to avoid by the following definition: 

 ad ad kk k
f fg x f g x    , ,1 1      (5.7) 
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A.5.5. Lie algebra 
 
(1) Bilinear : r r n

1 2 1 2 1 2, , , , ,  real - valued functions       vector fields   f f g g  

 
r r r r

r r r r
1 1 2 2 1 1 1 1 2 2 1

1 1 1 2 2 1 1 1 2 2 1

f f g f g f g
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, , ,

, , ,
 (5.9) 

 

(2) Skew Commutative 

 f g g f, ,   (5.10) 
 
(3) Jacobian Identity : f g h, , n  
 f g h g, h, f h, f , g 0, ,     (5.11) 

 

A.5.6. Properties. 
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(1) if    ,      f n  
 L Lf fx x        (5.12) 
 
(2) if   , , ,      f g n  

 L L   f fx x      .  (5.13) 
 
(3) if    , ,     f g n  
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(4) if  f, g : vector fields;       ; co-vector field 
     f g g gf f,  L L  (5.15) 
 
(5) if   , , ,      f g n  
        . . . . , . . . .f g f g g ff g,   L L     (5.16) 
 
(6) if   , ,      f n ;      : co-vector field 

 L L L       f f fx f           . . . . . .  (5.17) 

 

A.5.7. Example. 
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