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Preface

Sliding mode control (SMC) commenced in the Soviet Union in the late 1950s, but
this new control technique was not published until the publications [70] and [113].
Then, the sliding mode research community expanded quickly and the number of
publications on this control framework grew correspondingly. Due to the fact that
SMC relies on an infinite switching frequency of the input signal, it is inherently a
continuous-time control strategy. However, the infinite switching is not achievable
in real applications, especially for discrete-time controllers whose input signal can
only be varied at the sampling instances. This fact limits the switching frequency
to the discrete-time system’s sampling frequency. It is worth noting that in a num-
ber of applications the assumption of an infinite switching frequency can be rela-
tively justified. In the case that the sampling rate is much faster than the dynam-
ics of the system under control, the influence of the bounded switching frequency
will be confined. It is thus a usual approach to design sliding mode controllers in
the continuous-time domain, even if the system is computer-aided-controlled [149],
regarded as continuous-time sliding mode controller (CSMC), since it is designed
according to a continuous-time model of the system, regardless of the sampling is-
sue. However, the effectiveness of the obtained controller will, in addition to many
other parameters, strongly depend on the sampling frequency. It means that the faster
sampling is performed, the less the influence of the sampling rate will be. More im-
portantly, for a relatively low sampling frequency, the limited switching frequency
may result in undesirable effects on the input signal or even instability of the closed-
loop system.

Alternatively, the idea of discrete-time sliding mode control (DSMC) has been
proposed in literature, which is significantly different from its continuous-time coun-
terpart; see [83] for more information. The results presented in e.g. [83] demonstrate
that an appropriate choice of sliding surface, used with the equivalent control, can
ensure a bounded motion about the surface in the presence of bounded matched un-
certainty. Notice also that from this viewpoint, the DSMC problem can be seen as
a robust optimal control problem and is related to discrete-time Lyapunov min-max
problems [83]. The problem is to select, among all possible feedback controllers, the
feedback gain that minimizes the worst case effect of the uncertainty on the Lya-
punov difference function [83]. Moreover, the discrete-time equivalent control law
can be considered as a solution of the discrete-time linear quadratic regulator (LQR)
problem under the assumption of cheap control; that is, no penalty is assigned to the
control effort in the cost function.

In this book, we explain our recent investigations to improve DSMC and adopt
this control strategy to different fields.

xix



xx Advances in Discrete-Time Sliding Mode Control: Theory and Applications

The first introductory chapter (Chapter 1) discusses the reasons to consider
DSMC. Furthermore, for tutorial purposes, a brief review of CSMC is given in the
context of a second-order system. Lastly, in this chapter, the well-known regular
form-based method for the design of SMC is reviewed in the framework of discrete-
time systems.

Chapter 2 first provides an overview of the relevant literature and places the con-
tribution of the book in a proper context. Further in this chapter, two new forms of
switching function are proposed which can be more efficient in terms of reducing the
ultimate bound on the system state and reducing the chattering created by traditional
switching functions. This new switching function basically uses a disturbance esti-
mator which comes from the same idea presented in [133]. The main idea is, with
the assumption of continuity of the original continuous-time disturbance signal, to
use the previous value of the sampled disturbance for estimating the current one in
the control law. However, model uncertainty is not considered in [133]. In Chapter 2,
it is also discussed that using the mentioned estimator directly in the controller will
increase the order of the system and, in addition, it results in a system involving time-
delay. Stability analysis and ultimate boundedness are then investigated for this kind
of system. This method greatly reduces the conservatism of the current linear matrix
inequality (LMI)-based methods presented in the few existing works that consider
the problem of applying DSMC to the systems including unmatched uncertainties.
Specifically, this method avoids using inequalities to deal with the uncertain negative
signum quadratic terms appearing in the derived Riccati-like inequality, which is not
easy to be directly arranged as an LMI problem. Instead, a lossless technique is pro-
posed to convert the mentioned inequality to a form that can be easily written as an
LMI. These results were previously published in the paper [13].

While Chapter 2 proposes a state feedback DSMC for uncertain discrete-
time systems whose whole states’ information is available, Chapter 3 proposes an
observer-based output feedback DSMC for discrete-time multi-input multi-output
(MIMO) systems. This is more practical, as in many real applications, only systems’
output is accessible. Furthermore, the disturbance estimator in Chapter 2 has been
designed for the cases that the system states are entirely available. By exploiting out-
put information only for discrete-time MIMO systems with unmatched disturbances
and without uncertainties, a framework has been proposed in [32]. Chapter 3 uses an
integral term of the estimation output error, in addition to the well-known Luenberger
observer which observes the system state with a proportional loop, to allow more de-
grees of freedom. This matter is referred to as proportional integral observer (PIO)
in the literature [32]. Nevertheless, the underlying system in [32] does not involve
unmatched uncertainties, unlike the system considered in this chapter. The proposed
scheme here extends the problem of utilizing disturbance observer in the output feed-
back DSMC (ODSMC) to uncertain discrete-time systems using an innovative LMI
based framework. Many of the results in Chapter 3 were previously published in the
conference paper [11].

The main goal of Chapter 4 is to stabilize a networked control system (NCS) in-
volving consecutive data packet dropout with a sliding mode control strategy that can
improve the existing approaches. In doing so, a novel sliding function is introduced
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by employing the available communicated system states involving packet losses. This
is significantly different from the existing DSMC in the literature [101, 33], and it
also provides the possibility to directly build the switching component of the DSMC
by exploiting only the available system states. The results in Chapter 4 are based on
the papers [6, 15].

The DSMC, given for NCSs in Chapter 4, is derived based on two major assump-
tions:

1. the packet losses occur only in the channel from the sensor to the con-
troller;

2. the system states are entirely available.

However, these assumptions may be unrealistic for many practical problems. Thus
Chapter 5 intends to design sliding mode controllers for NCSs involving both mea-
surement and actuation consecutive packet losses (or long-term random delays),
which exploit only output information. This ODSMC can distinguish itself from
the existing literature on the SMCs applied to the NCSs, in the sense that both the
measurement and actuation delays are viewed as the Bernoulli distributed white se-
quence. The results in Chapter 5 were previously published in the paper [7].

Decentralized SMC has previously been developed in the literature for large-
scale interconnected systems [144, 145, 112, 92]. However, distributed SMC has
received less attention and hence it requires more investigation. Chapter 6 first ex-
plores the problem of designing a sparse DSMC network for a given plant network
with arbitrary topology. To do so, this chapter considers a priori the control net-
work topology which is a subset of the underlying dynamics network and provides a
methodology to stabilize the underlying dynamics utilizing a (sparse) distributed ob-
server and controller network. We will show that the proposed observer-based DSMC
has the ability to cover all the cases such as decentralized, distributed, and sparsely
distributed topologies. In Chapter 6, as the second step, we will search for a sparse
control/observer network structure with the least possible number of links that can
satisfy the given stability condition. To this end, a heuristic iterative algorithm will be
proposed, distinguishing itself from a trial-and-error process which requires checking
of all the possible structures. These results were previously published in the confer-
ence paper [14].

Although the SMC is now a well-known strategy, from the standpoint of con-
straining the available control action, all the traditional methods considered in the
literature have shortcomings. This drawback basically comes from the nature of the
SMC design process which contains two separate stages. During the synthesize of
the sliding function, there is no sense of the control action level that is required to
induce and retain sliding. This issue is more crucial in Chapter 7 when it comes
to sparsifying the control network structure, as without limits on the available con-
trol actions, it may result in the high level of control efforts that each subsystem’s
controller requires to apply, which is not a practical case. Chapter 7 develops an ap-
proach by which we can deal with an H2 based optimal structured SMC problem. In
this chapter in order to address the problem of designing a sparse SMC controller, a
specific form of fictitious system, whose matrices contain the control network struc-
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ture, is derived. This makes the well-developed weighted `1 algorithm infeasible to
apply to our problem. Alternatively, Chapter 7 proposes a heuristic scheme to obtain
the sparse sliding mode controller. The results in Chapter 7 were published in the
papers [12, 8].

According to the so-called 1D quasi-sliding mode, SMC design has been ex-
tended for 2D systems in the Roesser Model (RM). In addition, the conditions to
ensure the remaining horizontal and vertical states in RM on the switching surfaces
and also the reaching condition using a 2D Lyapunov function are investigated in [3].
Another strategy to work with 2D systems is to transfer them to a 1D form. Wave
advance model (WAM) is a 1D form of 2D systems established in [111]. From the
view point of WAM model, 2D systems are considered as advanced waves and conse-
quently the original stationary 2D system is converted to a time-varying 1D system.
Moreover, the system matrices are in rectangular form rather than square form. As
a result, the major drawback of this 1D form of 2D systems is the varying dimen-
sions of the defined state vectors. This means that the results developed using this
framework are most likely computationally unattractive in terms of possible appli-
cations. Motivated by this issue and by the use of stacking vectors, a new approach
to converting 2D systems to a 1D form is proposed in Chapter 8. Consequently, the
states, inputs and outputs of the obtained 1D system are in the vector form, and more
importantly their dimensions are invariant. This framework is basically useful for a
class of 2D linear systems in which information propagation in one of the two dis-
tinct directions only occurs over a finite horizon. This can be the case of a repetitive
process [50] or any inherently 2D system, for instance, the Darboux equation [73].
The suggested 1D vectorial form in Chapter 8 unlike the WAM form has invariable
dimension and consequently can be converted to regular form in SMC. In this chap-
ter, first the Fornasini and Marchesini (FM) model of 2D systems which is a second
order recursive form is considered. The results in Chapter 8 for 2D systems were
published in the paper [5].

In Chapter 9, first, the controllability analysis of the WAM model of the first FM
model is studied, and a necessary condition for the controllability of this 1D model
is given. On the other hand, during the procedure of designing the sliding surface in
Chapter 8, it is assumed that the obtained 1D system is controllable. But, the con-
trollability of the obtained 1D form and its relation to the original 2D system is an
unanswered problem in Chapter 8. Hence, motivated by these issues, in this chapter,
we focus on the controllability analysis of the proposed 1D form of the underlying
2D systems. Based on the controllability analysis, a new notion, directional control-
lability, for the underlying 2D systems is introduced and studied. More importantly,
a necessary and sufficient condition for the directional controllability of 2D systems
is presented in this chapter. The controllability analyses of 2D systems here were
published in the papers [9, 10].

Finally, Chapter 10 is devoted to the problem of heart rate regulation during
cycle-ergometer exercise using both a non-model-based as well as a model-based
control strategy along with a real-time damped parameter estimation scheme. The
model-based control strategy is a time-varying integral sliding mode controller. A
recursive damped parameter estimation method is also developed, by incorporation
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of a weighting upon the one-step parameter variation, which in contrast to the con-
ventional parameter estimation schemes can avoid the occurrence of the so-called
blowup phenomena. The calculated control signals are transmitted to the subjects
employing a synchronized biofeedback mechanism. Indeed, delivering a feedback
signal when the pedals are not in a suitable position to efficiently exert force may
be ineffective and this may, in turn, lead to the cognitive disengagement of the user
from the feedback controller. Chapter 10 examines a novel form of control system
which has been designed for this project. The system is called an “actuator-based
event-driven control system”. The proposed control and estimation scheme were ex-
perimentally verified using several healthy male participants and the results demon-
strated that the designed scheme is able to regulate the HR of the exercising subjects
to a predetermined HR profile preventing overshooting in the HR responses. The re-
sults in this chapter are based on the published papers [16, 17, 18, 19, 20, 21].

Ahmadreza Argha
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Abstract– Why discrete-time sliding mode control?
While a large number of investigations in the control systems literature focus on
the analysis of continuous-time systems, more and more practising control engi-
neers implement the control laws using digital computers. The controllers can ei-
ther be carried out from continuous-time representations using fast sampling ideas,
or the continuous-time controllers can be converted to their discrete-time represen-
tations. However, the choice of the high sampling rate, which nearly approximates
continuous-time, may not always be possible. Alternatively, discrete-time controllers
can be designed directly from a discrete-time representation of the plant. As a result,
one thread of the literature develops discrete-time controllers to stabilize discrete-
time linear systems.

In this book, our main focus is on the design of a specific control strategy using
digital computers. This control strategy referred to as sliding mode control (SMC)
has its roots in (continuous-time) relay control. In fact, as the SMC technique relies
on an infinite switching frequency of the input signal, it is inherently a continuous-
time control strategy. However, this matter can never be met in real applications,
especially for discrete-time controllers where the input signal can only be varied at
the sampling instances. This fact can limit the switching frequency to the sampling
frequency. Nevertheless, in the case that the sampling rate is much faster than the dy-
namics of the system under control, the influence of the bounded switching frequency
will be confined. It is thus a usual approach to design sliding mode controllers in
the continuous-time domain, even if the system is computer-aided-controlled [149],
regarded as continuous-time sliding mode controller (CSMC), since it is designed
according to a continuous-time model of the system, regardless of the sampling is-
sue. However, the effectiveness of the obtained controller will strongly depend on
the sampling frequency, i.e. the faster sampling is performed, the less influence of
the sampling rate will be. On the other hand, for a relatively low sampling frequency,
the limited switching frequency may result in undesirable effects in the input signal
or even instability of the closed-loop system.

1
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This book aims to explain our recent research outcomes in the field of discrete-
time sliding mode control (DSMC). The discrete-time systems here are assumed to
be obtained by exploiting the sample-and-hold method of sampling from continuous-
time systems. In what follows, we present a brief introduction to the concept of
continuous-time SMC, and the regular form-based method for the design of SMC,
albeit in the context of discrete-time systems.

1.1 Continuous-time SMC
While considering practical control problems, a discrepancy may exist between the
actual system and the model used to describe the system behavior; i.e. what is the
system output with a specific input. Discrepancies can occur due to exogenous distur-
bances, unmodeled dynamics, etc. Usually, in model-based control design schemes,
this (inaccurate) mathematical model is used for the design of a controller. As a re-
sult, controllers should be able to provide a desired performance for the closed-loop
system in the presence of disturbances/uncertainties. This task is the main target of
the so-called robust control methods. Sliding mode control technique is indeed one
of the robust control approaches among many methods proposed and considered in
control theory.

Consider the following uncertain linear-time-invariant (LTI) continuous-time
system:

ẋ(t) = Ax(t)+B[u(t)+ξ (x,u, t)], (1.1)

where x ∈ Rn and u ∈ Rm are the state vector and control input vector. The un-
known signal ξ (x,u, t) : Rn×Rm×R+ → Rm denotes the matched uncertainty in
(1.1) whose Euclidean norm is bounded by a known function.

Definition 1.1 Consider the following system

ẋ(t) = Ax(t)+Bu(t)+ B̃ξ̃ (x,u, t). (1.2)

The uncertainty ξ̃ in (1.2) is said to be (un)matched uncertainty, if the range space
of the input matrix B (does not) contains the range space of B̃ [43].

Without loss of generality, assume that the matrix B has full rank and m ≤ n. For
example, consider a double integrator system, i.e. A and B matrices in (1.1) are as
follows

A =

[
0 1
0 0

]
, B =

[
0
1

]
. (1.3)

Now let us design a control law for u that asymptotically steers the system
states to the origin; i.e. x = 0. As the first choice, let us consider u = Fx, where
F ∈R1×2 is a feedback gain matrix which can be designed using numerous available
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FIGURE 1.1
Evolution of system state using LQ regulator.

approaches. We design F using the linear quadratic regulator (LQR) design approach
with Q =

[
10 0
0 1

]
and R = 1. The obtained gain is F = [−3.1623 −2.7064 ], and the poles

of the closed-loop system A+BF are located at −1.3532±1.1537i. Fig. 1.1 depicts
the evaluation of system states with the proposed LQ regulator when the initial con-
ditions are x(0) = [2 −1 ]T and ξ (x,u, t) = 0.2sin(t). As it is evident from Fig. 1.1,
this controller cannot asymptotically steer all states to the origin in the presence of ξ .
In other words, the LQ regulator can only steer the system states into a region within
a bound about x = 0. Now, define a new variable σ as

σ = x2−Mx1, (1.4)

where M is a (scalar) design parameter which should be designed such that if σ = 0
the remaining dynamics are stable. From σ = 0, we can derive

x2 = Mx1, (1.5)

Substituting (1.5) into ẋ1 = x2, we can obtain ẋ1 = Mx1. This is indeed the dy-
namics which describes sliding motion. Thus to ensure stability in sliding mode, M
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should be a negative scalar. As can be seen from ẋ1 = Mx1, the disturbance ξ has no
influence on the sliding mode. From the condition σ̇ = ẋ2−Mẋ1 = 0, we may obtain

σ̇(t) =−Mx2(t)+u(t)+ξ (x,u, t) = 0, ∀t > ts (1.6)

where ts denotes the time when sliding motion starts. To satisfy σ̇ = 0, a control law
can be derived as

ueq(t) = Mx2(t)−ξ (x,u, t). (1.7)

This is the so-called equivalent control and is not implementable as ξ is unknown.
Indeed, the equivalent control can be regarded as the average control effort required
to stay sliding. Now rather than the equivalent control, consider the following control
law:

u(t) = Mx2(t)−ρsign(σ(t)). (1.8)

It can be shown the above control law can steer σ to zero in finite time if ρ =
ξ̄ +ε , where ξ̄ > 0 is a known upper bound on the disturbance ξ , i.e. ‖ξ (x,u, t)‖≤ ξ̄

and ε > 0 is a small scalar. Consider a candidate Lyapunov function as

V =
1
2

σ
2. (1.9)

Now,
V̇ = σσ̇ = σ(Mx2−Mx2 +ξ −ρsign(σ))

≤ |σ |(ξ̄ −ρ) =−ε|σ |.
(1.10)

This shows the finite-time convergence of the sliding function σ . Note that σσ̇ < 0 is
known as reachability condition. Now, we apply the SMC in (1.8), with M =−1.8875
and ρ = 4, to the system in (1.1) with ξ (x,u, t) = 0.2sin(t). The results are illustrated
in Figs. 1.2-1.6. As it is evident from Figs. 1.2 and 1.3, the SMC in (1.8) ensures the
finite-time convergence of the sliding function as well as asymptotic convergence of
system states to zero when ξ 6= 0. The reaching phase and the sliding phase can be
seen in Fig. 1.6. However, as can be seen in Figs. 1.4 and 1.5, due to the practical lim-
itations on the sign function implementation, the so-called chattering phenomenon
occurs while using the SMC (1.8). It is worth noting that in some applications such a
switching is inherent, e.g. electrical converters. However, broadly speaking, in many
other applications the high frequency switching is undesirable [98].

Since the actuator bandwidth is usually limited, an infinite switching frequency
is not achievable. Also, the high frequency control signals in real applications may
have harmful consequences, e.g. large current peaks in electrical actuators and high
wear in mechanical gear boxes. One simple and useful method to make the discon-
tinuous component in (1.8) continuous and smooth is approximating sign(·) by some
continuous/smooth function. For example, sigmoid function is a well-known choice
[43]:

un =−ρ
σ

|σ |+ ε
, (1.11)
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FIGURE 1.2
Evolution of system state obtained by applying SMC in (1.8) with M =−1.8875 and
ρ = 4 to the system 1.1.
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FIGURE 1.3
Evolution of switching function for the system 1.1 using SMC in (1.8) with M =
−1.8875 and ρ = 4.
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FIGURE 1.4
Evolution of switching function (zoom) for the system 1.1 using SMC in (1.8) with
M =−1.8875 and ρ = 4.



8 Advances in Discrete-Time Sliding Mode Control: Theory and Applications

0 2 4 6 8 10
Time (Sec)

-6

-4

-2

0

2

4

6

8

C
on

tr
ol

 e
ffo

rt

FIGURE 1.5
Control effort with SMC in (1.8) with M =−1.8875 and ρ = 4.
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where ε > 0 is a small scalar and un denotes the nonlinear controller part of the
SMC (1.8). Note that ε is a design freedom to trade off between having an ideal
performance and ensuring a smooth control signal. Let us replace ρsign(σ) with
ρ

σ

|σ |+ε
in (1.8) to yield:

u(t) = Mx2(t)−ρ
σ

|σ |+ ε
. (1.12)

Applying this new controller, with M = −1.8875, ρ = 4 and ε = 0.1, to the system
(1.1) leads to the results shown in Figs. 1.7-1.9. As it is evident from these results, the
controller (1.12) does not lead the switching function σ to converge to the origin in
finite-time when ξ 6= 0, and further the system states do not converge to zero. How-
ever, the sliding variable converges to a bound around σ = 0 and the system states
converge to a region within a bound about x = 0. The controller (1.12) is referred to
as quasi sliding mode control and the boundary region about σ = 0 described previ-
ously is called quasi sliding mode band.

Now a more practical controller rather than (1.12) can be proposed as

u(t) = Mx2(t)+ϕσ −ρ
σ

|σ |+ ε
, (1.13)

where ϕ < 0 is a scalar which can be used along with ρ to change the convergence
rate of sliding variable to a bound around σ = 0. Note that by the choice of sliding
surface (1.4), it follows from (1.6) that

σ̇(t) = ϕσ −ρ
σ

|σ |+ ε
+ξ (x,u, t). (1.14)

Let us analyze the reachability of the bound |σ | ≥ δ , where δ = ξ̄ ε

ρ−ξ̄
, with the new

controller (1.13). We can consider the reachability condition

σσ̇ ≤−η |σ |, (1.15)

where η > 0 is a small scalar. Now it follows from (1.15) and (1.14) that

σσ̇ = σ

(
ϕσ −ρ

σ

|σ |+ ε
+ξ

)
≤ |σ |

(
ϕ|σ |−ρ

|σ |
|σ |+ ε

+ ξ̄

)
≤ |σ |

(
ξ̄ −ρ

|σ |
|σ |+ ε

)
≤−η |σ |.

(1.16)

The above inequality leads us to

|σ | ≥ (η + ξ̄ )ε

ρ−η− ξ̄
. (1.17)
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FIGURE 1.7
Evolution of system state obtained by applying SMC in (1.12) with M = −1.8875,
ρ = 4 and ε = 0.1 to the system (1.1).
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FIGURE 1.8
Evolution of system state (zoom) obtained by applying SMC in (1.12) with M =
−1.8875, ρ = 4 and ε = 0.1 to the system (1.1).
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FIGURE 1.9
Evolution of switching function for the system (1.1) using SMC in (1.12) with M =
−1.8875, ρ = 4 and ε = 0.1.
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FIGURE 1.10
Evolution of switching function (zoom) for the system (1.1) using SMC in (1.12)
with M =−1.8875, ρ = 4 and ε = 0.1.
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FIGURE 1.11
Control effort with SMC in (1.12) with M =−1.8875, ρ = 4 and ε = 0.1.
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FIGURE 1.12
Evolution of system state obtained by applying SMC in (1.13) and (1.12) with M =
−1.8875, ρ = 4, ε = 0.1 and ϕ =−1 to the system (1.1).

By taking the scalar η > 0 very small, the above given bound on |σ | reduces to

|σ | ≥ ξ̄ ε

ρ− ξ̄
. (1.18)

In summary, if |σ | ≥ ξ̄ ε

ρ−ξ̄
, the controller (1.13) will force the system states into the

quasi SMC band δ = ξ̄ ε

ρ−ξ̄
.

With the same choice of M = −1.8875, as used previously, and letting ϕ = −1,
ρ = 4 and ε = 0.1, we apply the controller (1.13) to the system (1.1) and the obtained
results are shown in Figs. 1.12-1.15.

As it is evident from Figs. 1.12-1.15 the new parameter ϕ in the controller can be
used, along with the parameter ρ , to set the convergence rate to the sliding surface
(or indeed into the quasi sliding band). Quasi sliding is obtained in 0.64 s with the
controller (1.13), while it takes around 0.94 s for the controller (1.12) to drive the
sliding variable to the quasi sliding band.

The double integrator system considered here is a single-input system, and the
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Evolution of switching function for the system (1.1) using SMC in (1.13) and (1.12)
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sliding mode controller design given above is not extendable to multi-input systems.
For multi-input systems, SMC design can be carried out in different ways including
the regular form-based method. While we give a brief introduction to this method in
this chapter, albeit in the context of discrete-time systems, it should be emphasized
that the linear matrix inequality (LMI)-based schemes given in the remainder of this
book for the design of DSMC is not basically based on the regular form-based SMC
design. We only use the regular form-based approach in the design of DSMC for
two-dimensional systems in Chapter 8.

1.2 Regular form-based DSMC
Similar to CSMC, the design procedure of the DSMC for stabilizing problems is split
into two steps:

1. Design a sliding surface which lead to stable internal dynamics during
sliding.

2. Create a control law which drives the closed-loop system into the sliding
surface and forces the system trajectories to stay on or at least as close as
possible to the surface.

A number of different methods for designing the sliding surface are considered in the
literature [43]. In this section, we give a brief introduction to the well-known regular
form based approach [43].

Consider the following uncertain linear discrete-time system,

x(k+1) = Ax(k)+Bu(k)+ f (k), (1.19)

where x(k) ∈ Rn and u(k) ∈ Rm. Generally, it is assumed that B ∈ Rn×m and m≤ n.
Besides, rank(B) = m (matrix B has full column rank) and it is assumed that the
pair (A,B) is controllable. Also, f (k) ∈ Rn denotes the uncertainty. We consider the
following general uncertainty

f (k) = ∆x(k)+dk, (1.20)

where ∆ shows the unknown uncertainty with the bound ‖∆‖ < α0 (‖.‖ the induced
Euclidean or induced spectral norm). Moreover, the term dk ∈ Rn, indicates the ex-
ternal disturbance and it is assumed that ‖dk‖ < β0, where β0 is a known positive
constant. As a result, we can write

‖ f (k)‖< α0 ‖x(k)‖+β0. (1.21)

Since rank(B) = m, there exists an orthogonal matrix Tr ∈ Rn×n such that

TrB =

[
0(n−m)×m

B̄2

]
, (1.22)
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where the matrix B̄2 ∈ Rm×m is nonsingular [127]. After the coordinate transforma-
tion, the system (1.19) is converted to[

x̄1(k+1)
x̄2(k+1)

]
=

[
Ā11 Ā12
Ā21 Ā22

][
x̄1(k)
x̄2(k)

]
+

[
0(n−m)×m

B̄2

]
u(k)+Tr f (k). (1.23)

Now, the sliding surface is introduced as

σx(k) = S̄x̄(k) = S̄1x̄1(k)+ S̄2x̄2(k), (1.24)

where S̄1 ∈ Rm×(n−m) and S̄2 ∈ Rm×m are the design parameters which determine
the sliding surface and should be chosen such that, in the case that σx(k) = 0, all
remaining dynamics are stable. During ideal sliding on the surface, σx(k) = 0 for all
k ≥ ks, where ks is the time when sliding starts, therefore

x̄2(k) =−S̄−1
2 S̄1x̄1(k). (1.25)

Substituting the equation (1.25) into the equation (1.23) and ignoring the uncertainty
f (k) leads to

x̄1(k+1) = (Ā11− Ā12S̄−1
2 S̄1)x̄1(k). (1.26)

Hence, stability in the sliding mode is satisfied when all eigenvalues of the matrix
(Ā11− Ā12S̄−1

2 S̄1) are located inside the unit circle. The sliding surface in the original
coordinate can be found by σx(k) = Sx(k), where

S = [S̄1 S̄2]Tr. (1.27)

Define Ts as

Ts =

[
I(n−m) 0(n−m)×m

S̄1 S̄2

]
, (1.28)

and in the new coordinate Tsx̄ 7−→ x̃, we have

x̃(k+1) =
[

x̄1(k+1)
σx(k+1)

]
=

[
Ã11 Ã12
Ã21 Ã22

][
x̄1(k)
σx(k)

]
+

[
0(n−m)×m

S̄2B̄2

]
u(k)+TsTr f (k).

(1.29)
Now, let

u(k) = ul(k)+un(k), (1.30)

where ul denotes the linear controller and un is the nonlinear component of the
DSMC. While we let un = 0 here, different choices for nonlinear controller in (1.30)
will be proposed and discussed later in Chapter 2. Now, consider the following well-
known linear sliding control law:

u(k) =
(
S̄2B̄2

)−1 [(
Φ− Ã22

)
σx(k)− Ã21x̄1(k)

]
, (1.31)

where Φ ∈ Rm×m is a diagonal matrix whose diagonal elements, φr, r = 1, . . . ,m,
satisfy 0≤ φr < 1. Thus, with the control law (1.31) the closed-loop system is

x̃(k+1) =
[

x̄1(k+1)
σx(k+1)

]
=

[
Ã11 Ã12
0 Φ

][
x̄1(k)
σx(k)

]
+

[
f̃1(k)
f̃2(k)

]
. (1.32)
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