Basic Sliding Mode Controller Design

Duy-Ky Nguyen, PhD © All Rights Reserved

1. Introduction

Sliding mode control (SMC) is able to deal with uncertainty and nonlinearity.

In the sliding-mode control theory, control dynamics have 2 sequential modes, the first is the *reaching mode* and the second is the *sliding mode* (Utkin 1977, Utkin 1992). In particular, the Lyapunov sliding condition forces system states to *reach* a hyperplane and keeps them *sliding* on this hyperplane. Essentially, a SMC design is composed of 2 phases: hyperplane design and controller design. A hyperplane is first designed via the pole-placement approach as in the state-space control (Utkin *et al.* 1979), a controller design is then based on the sliding condition. The stability is guaranteed by the sliding condition (Lyapunov Stability Criterion Theorem) *and* by a *stable* hyperplane (stable designer-chosen pole-placement). In the reaching mode, the control dynamics depend on system parameters; but in the sliding mode they depend on the hyperplane, this is the *invariance* property of the sliding mode (Drazenovic 1969).

This paper presents basic sliding mode control theory, so I will use the 2nd-ordered SISO canonical. More general case MIMO higher order can be found in Ref[1].

2. Hyperplane Design

Theorem 1: Hyperplane Design for Canonical Nonlinear Systems For a <i>n</i> -ordered canonical <i>linear or nonlinear</i> system, if the hyperplane-eigenvalue is			
$\lambda_{H} = \lambda_{1}$	(1)		
then a hyperplane can be found by			
$s = \mathbf{H} \cdot \mathbf{x}, \mathbf{H} = \begin{bmatrix} h_1, & 1 \end{bmatrix}$	(2)		
where <i>h</i> is the coefficient of the following polynomial			
$(\lambda - \lambda_1) = \lambda + h_1$	(3)		

Proof

Consider the following *n*-ordered canonical linear or nonlinear system with output $y = x_1$

$$\begin{cases} \dot{y} = \dot{x}_1 = x_2 \\ \dot{y} = \dot{x}_2 = \phi(\mathbf{x}), \quad \phi(\mathbf{x}): \text{ linear or nonlinear function of the system state variable } \mathbf{x} \end{cases}$$

and a hyperplane

$$s = \mathbf{H}\mathbf{x} = \begin{bmatrix} h_1, & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = h_1 x_1 + x_2$$

In the sliding mode, I have the following linear differential equation

$$s = 0 \implies h_1 x_1 + x_2 = 0 \implies h_1 y + \dot{y} = 0$$

then the corresponding characteristic equation is

$$L + h_1 = 0 \tag{5}$$

thus if the roots of this equation Eq.(5) are Hurwitz, then the output decays according to the above linear differential equation Eq.(4).

Q.E.D

(4)

Nov 26 2005

3. Sliding Condition

Choose a positive definite function for a Lyapunov candidate (Utkin 1977)

$$V = \frac{1}{2}s^2 \Longrightarrow \dot{V} = s.\dot{s} \tag{6}$$

Define a sliding condition as

	$s.\dot{s} < 0$	(7)
then		
	$ V > 0 \\ \dot{V} < 0 \} \Rightarrow V \xrightarrow{t \to \infty} 0 \Rightarrow s \xrightarrow{t \to \infty} 0 \Rightarrow V \text{ must reduce to } zero \Rightarrow s \text{ must reduce toward } zero $	

For $s \to 0$ in a finite time to achieve the *sliding mode* (s = 0), the sliding condition should be strictly $s.\dot{s} < -\delta$ where $\delta > 0$. That is the larger δ is, the faster the sliding mode is attained. Strictly speaking, the sliding mode exists only asymptotically.

Hence the sliding condition is analogous to the Lyapunov's direct stability criterion.

Fig.1.1: Reaching mode and sliding mode

where

s is sliding variable from Eq.(2)

y is system output

 $t_T = t_R + t_S$ with

 t_T is total time

 t_R is reaching time $(s.\dot{s} < 0)$

 t_s is sliding time (s = 0)

In the figure above, there is a sliding mode in the first case, but practically not in the second.

When $s \neq 0$, the system is in the <u>reaching mode</u> $(s.\dot{s} < 0)$, and the sliding condition then guarantees the sliding mode (s = 0).

Remark 1: Negativeness of Sliding Condition

The sliding condition must be *negative enough* to guarantee that the reaching mode terminates in a finite time for the sliding mode to exist

Remark 2: Stability of the Sliding Mode

A stable sliding mode implies a stable system only if the sliding condition is satisfied. The sliding mode stability is based on 6 theorems in Utkin 1977 where the proofs were referred to other works in the Russian literature. In the latest book by Utkin 1992, these 6 theorems were omitted and the sliding-mode stability was based instead on 2 complex theorems. Alternatively, I will propose a simple stability criterion in Section 3.2.

Remark 3: Dimension of Sliding Hyperplane

In the sliding mode, the system effectively becomes another system of reduced order. Therefore, a 2-nd order system has a sliding *line*, a 3-rd order system has a sliding *plane*, a higher order system has a sliding *hyperplane*.

4. Sliding Dynamics

From Eq.(1.1), if the output y and the state vector \mathbf{x} are defined as

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} y \\ \dot{y} \end{bmatrix}$$

then I have the following sliding dynamics equation

$$s = 0 \Longrightarrow h.x_1 + x_2 = 0 \Longrightarrow \dot{y} + h.y = 0$$
(8)

$$\Rightarrow y(t) = y(0)e^{-h.t} \tag{9}$$

Therefore, once s = 0, the output state *y* decays as described by Eq.(9. Note that Eq.(8 is a *characteristic equation* whose root is -h, so the hyperplane-eigenvalue is defined as $\lambda_H = [-h]$. This hyperplane-eigenvalue determines the sliding dynamics. The sliding dynamics depend only on this hyperplane-eigenvalue and not on the system parameters or on how the sliding mode is reached: that is the property of invariance in the sliding mode (Drazenovic 1969).

5. Equivalent / Reaching Control

Theorem 2 Continuous SMC Design for N Consider a canonical nonlinear S $\dot{\mathbf{x}}(\mathbf{t}) = \mathbf{f}(\mathbf{x}, t) + \mathbf{g}(\mathbf{x}, t) \cdot u$	onlinear Systems SISO system	
then a continuous SMC control func	tion is determined by	
	$\underbrace{u = u_e + u_r}_{e}$	(10)
where		
• equivalent control		
	$u_e = -(\mathbf{Hg})^{-1} \mathbf{Hf},$	(10.a)
• reaching control		
C C	$u_r = -(\mathbf{Hg})^{-1}.\delta.s$	(10.b)
where		
$\mathbf{x}, \mathbf{f}, \mathbf{g} \in \mathfrak{R}^{n \times 1}, \mathbf{H} \in \mathfrak{R}^{1 \times n}, u, s \in \mathfrak{R},$	$\delta \in \mathfrak{R}_{(+)}$: sliding margin.	

SMC_Basic.doc

Proof

Since the system is in the canonical form, direct eigenvalue allocation is applied for a hyperplane

 $s = \mathbf{H}\mathbf{x} \Rightarrow \dot{s} = \mathbf{H}\dot{\mathbf{x}} = \mathbf{H}(\mathbf{f} + \mathbf{g}.u) = \mathbf{H}\mathbf{g}.[u + (\mathbf{H}\mathbf{g})^{-1}\mathbf{H}\mathbf{f}].$

By the above continuous SMC control function, I have

 $s\dot{s} = -\delta \cdot s^2 < 0$: the sliding condition is satisfied.

Q.E.D.

6. SMC Stability Criterion for Nonlinear Systems

Based on Theorem 6.1 above, I have the following corollary on a stability test for both linear and nonlinear systems.

Corollary 1: Stability Criterion

For an *n*-ordered canonical *linear or nonlinear* system, if there exists a control function to satisfy the sliding condition $s.\dot{s} \le 0$ n the hyperplane determined by Theorem 2 then the system is stable.

Proof

The control function satisfying the sliding condition will drive the system into the sliding mode. Then, by Theorem 2 the system is stable.

Q.E.D.

7. Numerical Examples

Consider a system in Zhou et al. 1992 which is modified with a reference output:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ 2x_1x_2 + x_1^2 + \sin(tx_1) + (1 + \sqrt{|x_1|})u \end{bmatrix}$$

$$y_{ref} = \ln(t+1) \Longrightarrow z = y - y_{ref} = x_1 - \ln(t+1)$$

then

$$\begin{cases} z = x_1 - \ln(t+1) \\ \dot{z} = x_2 - \frac{1}{t+1} \\ \ddot{z} = 2x_1 x_2 + x_1^2 + \sin(tx_1) + \frac{1}{(t+1)^2} + \left(1 + \sqrt{|x_1|}\right) u \end{cases}$$

Choose a hyperplane-eigenvalue

$$\boldsymbol{\lambda}_{H} = \begin{bmatrix} -2 \end{bmatrix} \Longrightarrow \mathbf{H} = \begin{bmatrix} 2 & 1 \end{bmatrix}$$

then the hyperplane

$$s = \mathbf{H} \cdot \mathbf{z}$$

By Theorem 2, a continuous SMC is determined by

$$u = -\left(1 + \sqrt{|x_1|}\right)^{-1} \left\{ 2\left(x_2 - \frac{1}{t+1}\right) + 2x_1x_2 + x_1^2 + \sin(tx_1) + \frac{1}{(t+1)^2} + \delta \cdot s \right\}$$

Tracking Continuous SMC for Nonlinear System

Fig. 6.2: Tracking Continuous Nonlinear SMC for Example 6.3.

References

[1] Duy-Ky Nguyen, *Sliding-Mode Control : Advanced Design Techniques*, PhD Thesis, University of Technology, Sydney, Australia, 1998.