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1. Introduction 
 
Sliding mode control (SMC) is able to deal with uncertainty and nonlinearity. 
 
In the sliding-mode control theory, control dynamics have 2 sequential modes, the first is the reaching mode 
and the second is the sliding mode (Utkin 1977, Utkin 1992). In particular, the Lyapunov sliding condition 
forces system states to reach a hyperplane and keeps them sliding on this hyperplane. Essentially, a SMC 
design is composed of 2 phases: hyperplane design and controller design. A hyperplane is first designed via the 
pole-placement approach as in the state-space control (Utkin et al. 1979), a controller design is then based on 
the sliding condition. The stability is guaranteed by the sliding condition (Lyapunov Stability Criterion 
Theorem) and by a stable hyperplane (stable designer-chosen pole-placement). In the reaching mode, the 
control dynamics depend on system parameters; but in the sliding mode they depend on the hyperplane, this is 
the invariance property of the sliding mode (Drazenovic 1969). 
 
This paper presents basic sliding mode control theory, so I will use the 2nd-ordered SISO canonical. More 
general case MIMO higher order can be found in Ref[1]. 

2. Hyperplane Design 

Theorem 1: Hyperplane Design for Canonical Nonlinear Systems 
 For a  n-ordered canonical  linear or nonlinear system, if the hyperplane-eigenvalue is 
 1λ=λH  (1) 
then a hyperplane  can be found by 
 [ ]1,   ,. 1hs == HxH  (2) 
where  is the coefficient of the following polynomial h
 ( ) 11 h+λ=λ−λ  (3) 
Proof 
 Consider the following  n-ordered canonical linear or nonlinear system with output  1 y x=
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In the sliding mode, I have the following linear differential equation 
 000 1211 =+⇒=+⇒= yyhxxhs &  (4) 
then the corresponding characteristic equation is 
 01 =+λ h  (5) 
thus if the roots of this equation Eq.(5) are Hurwitz, then the output decays according to the above linear 
differential equation Eq.(4). 
  Q.E.D 
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3. Sliding Condition 
 Choose a positive definite function for a Lyapunov candidate (Utkin 1977) 
 V s V s= ⇒ =1

2
2 & . &s  (6) 

 Define a sliding condition as 

 s s. & < 0 (7) 

then 
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 For s →  in a finite time to achieve the sliding mode 0 ( )0=s , the sliding condition should be strictly s s. & < −δ  

where . That is the larger δ is, the faster the sliding mode is attained.  Strictly speaking, the sliding mode 
exists only asymptotically. 

δ > 0

 
 Hence the sliding condition is analogous to the  Lyapunov's  direct  stability criterion. 
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Fig.1.1: Reaching mode and sliding mode 
where 
 s is sliding variable from Eq.(2) 
 y is system output 
 t t tT R= + S  with 

 tT  is total time 
 tR  is reaching time  ( )0. <ss &

 tS  is sliding time  ( )0=s

In the figure above,  there is a sliding mode in the first case, but practically not in the second. 
 
 When s ≠ , the system is in the 0 ( )0. <ss   mode  reaching & , and the sliding condition then guarantees the 

( )0mode  sliding =s  . 

Remark 1: Negativeness of Sliding Condition 

 The sliding condition must be negative enough to guarantee that the reaching mode terminates in a finite 
time for the sliding mode to exist 
 
Remark 2: Stability of the Sliding Mode 
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 A stable sliding mode implies a stable system only if the sliding condition is satisfied. The sliding mode 
stability is based on 6 theorems in Utkin 1977 where the proofs were referred to other works in the Russian 
literature. In the latest book by Utkin 1992, these 6 theorems were omitted and the sliding-mode stability was 
based instead on 2 complex theorems. Alternatively, I will propose a simple stability criterion in Section 3.2. 
 
Remark 3: Dimension of Sliding Hyperplane 

 In the sliding mode, the system effectively becomes another system of reduced order. Therefore, a 2-nd 
order system has a sliding line, a 3-rd order system has a sliding plane, a higher order system has a sliding 
hyperplane. 
 

4. Sliding Dynamics 
 From Eq.(1.1), if the output y and the state vector x are defined as 
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then I have the following sliding dynamics equation 
 s h x x y h y= ⇒ + = ⇒ + =0 01 2. & . 0  (8) 
 ( ) ( ) theyty ..0 −=⇒  (9) 

 Therefore, once s = 0, the output state y decays as described by Eq.(9. Note that Eq.(8 is a  characteristic 
equation whose root is − , so the hyperplane-eigenvalue is defined as h λH h= − . This hyperplane-eigenvalue 
determines the sliding dynamics. The sliding dynamics depend only on this hyperplane-eigenvalue and not on 
the system parameters or on how the sliding mode is reached: that is the property of invariance in the sliding 
mode (Drazenovic 1969). 
 

5. Equivalent / Reaching Control 
 

Theorem 2 Continuous SMC Design for Nonlinear Systems 
 Consider a canonical nonlinear SISO system 
 & , ,x t f x .g xa f a f a f= +t t u   
then a continuous SMC control function is determined by 
 u u ue r= +  (10) 

where 
 • equivalent control 
 ue = − −Hg Hfa f 1 , (10.a) 
 • reaching control 
 ur = − s−Hga f 1 . .δ  (10.b) 
where 
 f : sliding margin.  x f g H, , , , , ,∈ℜ ∈ℜ ∈ℜ ∈ℜ× ×

+
n n u s1 1             δ a
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Proof 
 Since the system is in the canonical form, direct eigenvalue allocation is applied for a hyperplane 
 s s u u= ⇒ = = + = + −Hx Hx H f g Hg Hg Hf& & . .a f a f 1 .  
By the above continuous SMC control function, I have 

ss s& .= − <δ 2 0: the sliding condition is satisfied. 
 Q.E.D. 
 

6. SMC Stability Criterion for Nonlinear Systems 
 Based on Theorem 6.1 above, I have the following corollary on a stability test for both linear and nonlinear 
systems. 

Corollary 1: Stability Criterion 
 For an  n-ordered canonical  linear or nonlinear system, if there exists a control function to satisfy the 
sliding condition s s. & ≤ 0 n the hyperplane determined by Theorem 2 then the system is stable. 
Proof 
 The control function satisfying the sliding condition will drive the system into the sliding mode. Then, by 
Theorem 2 the system is stable. 
  Q.E.D. 
 

7. Numerical Examples 
 Consider a system in Zhou  et al. 1992 which is modified with a reference output: 
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Choose a hyperplane-eigenvalue 
 λ H = − ⇒ =2 2H 1   
then the hyperplane 
 s = H z.   
 By Theorem 2, a continuous SMC is determined by 
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Choose δ = , I have 4
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Tracking Continuous SMC for Nonlinear System

 
Fig. 6.2:  Tracking Continuous Nonlinear SMC for Example 6.3. 
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