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1. Introduction

Sliding mode control (SMC) is able to deal with uncertainty and nonlinearity.

In the sliding-mode control theory, control dynamics have 2 sequential modes, the first is the reaching mode
and the second is the sliding mode (Utkin 1977, Utkin 1992). In particular, the Lyapunov sliding condition
forces system states to reach a hyperplane and keeps them s/iding on this hyperplane. Essentially, a SMC
design is composed of 2 phases: hyperplane design and controller design. A hyperplane is first designed via the
pole-placement approach as in the state-space control (Utkin ef al. 1979), a controller design is then based on
the sliding condition. The stability is guaranteed by the sliding condition (Lyapunov Stability Criterion
Theorem) and by a stable hyperplane (stable designer-chosen pole-placement). In the reaching mode, the
control dynamics depend on system parameters; but in the sliding mode they depend on the hyperplane, this is
the invariance property of the sliding mode (Drazenovic 1969).

This paper presents basic sliding mode control theory, so I will use the 2"%-ordered SISO canonical. More
general case MIMO higher order can be found in Ref[1].

2. Hyperplane Design

Theorem 1: Hyperplane Design for Canonical Nonlinear Systems
For a n-ordered canonical linear or nonlinear system, if the hyperplane-eigenvalue is

Ay =M (1)
then a hyperplane can be found by
s=Hx, H=[n, 1] 2)
where / is the coefficient of the following polynomial
(h=2)=21+h (3)

Proof
Consider the following n-ordered canonical linear or nonlinear system with output y =1x,

Y =X =x
{ =%, =¢(x), ¢(x):linear or nonlinear function of the system state variable x

and a hyperplane
X
s:Hx:[hl, 1]{ 1}:hlxl + X,
X,
In the sliding mode, I have the following linear differential equation
s=0 = hx,+x,=0 = hy+y=0 4)
then the corresponding characteristic equation is
A+h =0 (5)
thus if the roots of this equation Eq.(5) are Hurwitz, then the output decays according to the above linear

differential equation Eq.(4).
Q.E.D
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3. Sliding Condition

Choose a positive definite function for a Lyapunov candidate (Utkin 1977)
V=i =V =5 (6)

Define a sliding condition as

5.§<0 (7

then
V>0

V<0

}:> V——0=>5———>0 = V' must reduce to zero = s must reduce toward zero

For s — 0 in a finite time to achieve the sliding mode (s =0), the sliding condition should be strictly s.5 < -8

where §>0. That is the larger d is, the faster the sliding mode is attained. Strictly speaking, the sliding mode

exists only asymptotically.

Hence the sliding condition is analogous to the Lyapunov's direct stability criterion.
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Fig.1.1: Reaching mode and sliding mode
where
s 1s sliding variable from Eq.(2)
y is system output
t, =ty +t, with
t; 1s total time
t, is reaching time (5.5 <0)
t, is sliding time (s =0)

In the figure above, there is a sliding mode in the first case, but practically not in the second.

When s#0, the system is in the reaching mode (ss<0), and the sliding condition then guarantees the
sliding mode (s :0).

Remark 1: Negativeness of Sliding Condition
The sliding condition must be negative enough to guarantee that the reaching mode terminates in a finite

time for the sliding mode to exist

Remark 2: Stability of the Sliding Mode
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A stable sliding mode implies a stable system only if the sliding condition is satisfied. The sliding mode
stability is based on 6 theorems in Utkin 1977 where the proofs were referred to other works in the Russian
literature. In the latest book by Utkin 1992, these 6 theorems were omitted and the sliding-mode stability was

based instead on 2 complex theorems. Alternatively, I will propose a simple stability criterion in Section 3.2.

Remark 3: Dimension of Sliding Hyperplane
In the sliding mode, the system effectively becomes another system of reduced order. Therefore, a 2-nd
order system has a sliding /ine, a 3-rd order system has a sliding plane, a higher order system has a sliding

hyperplane.

4. Sliding Dynamics
From Eq.(1.1), if the output y and the state vector x are defined as
Mg
x=| |=["
Xs Y
then I have the following sliding dynamics equation
s=0=hx+x,=0=>p+h.y=0 (8)
= ylt)= y(0)e™ 9)
Therefore, once s=0, the output state y decays as described by Eq.(9. Note that Eq.(8 is a characteristic
equation whose root is —#4, so the hyperplane-eigenvalue is defined as A, =[-4]. This hyperplane-eigenvalue
determines the sliding dynamics. The sliding dynamics depend only on this hyperplane-eigenvalue and not on

the system parameters or on how the sliding mode is reached: that is the property of invariance in the sliding

mode (Drazenovic 1969).

5. Equivalent / Reaching Control

Theorem 2 Continuous SMC Design for Nonlinear Systems
Consider a canonical nonlinear SISO system
x(t)=f(x,1)+g(x,t).u

then a continuous SMC control function is determined by

u=u,+u, (10)
where
e equivalent control
u, =—(Hg) 'Hf, (10.a)
e reaching control
u, =—(Hg) .. (10.b)

where
x.f,geR™, HeR™, useR, 5 eR, : sliding margin.
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Proof
Since the system is in the canonical form, direct eigenvalue allocation is applied for a hyperplane
s=Hx=>§=Hk=H(f+g.u)= Hg.[u+(Hg)’le].
By the above continuous SMC control function, I have
ss=-3.5" <0: the sliding condition is satisfied.

Q.E.D.

6. SMC Stability Criterion for Nonlinear Systems

Based on Theorem 6.1 above, I have the following corollary on a stability test for both linear and nonlinear
systems.

Corollary 1: Stability Criterion
For an n-ordered canonical linear or nonlinear system, if there exists a control function to satisfy the
sliding condition s.s < 0 n the hyperplane determined by Theorem 2 then the system is stable.

Proof
The control function satisfying the sliding condition will drive the system into the sliding mode. Then, by

Theorem 2 the system is stable.
Q.E.D.

7. Numerical Examples
Consider a system in Zhou et al. 1992 which is modified with a reference output:

X, X3
X, - 2x1x2+x12+sin(tx1)+(1+ |x1|)u

Vo =In(t+1)=>z=y-yp,  =x~In(t+1)

then

z=x,—In(r+1)

. 1

=X, ——
Tl

1
Z=2xx, +x12 +sin(tx, ) + > +(1+ |x1|)u
(z+1)

Choose a hyperplane-eigenvalue
Ay = [_2]:> H= [2 1]
then the hyperplane
s=H.z
By Theorem 2, a continuous SMC is determined by

-l 1 1
u:—(1+ |xl|) {2()62 ——J+2x1x2+x|2+sin(txl)+( )2 +6.s}.
t+1 t+1
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Choose § =4, I have

Tracking Continuous SMC for Nonlinear System
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Fig. 6.2: Tracking Continuous Nonlinear SMC for Example 6.3.

References

[1] Duy-Ky Nguyen, Sliding-Mode Control : Advanced Design Techniques, PhD Thesis, University of

Technology, Sydney, Australia, 1998.

[SMC_Basic.doc

Page 5 of 5




	Introduction
	Hyperplane Design
	
	
	Theorem 1: Hyperplane Design for Canonical Nonlinear Systems



	Sliding Condition
	
	
	Remark 1: Negativeness of Sliding Condition
	Remark 2: Stability of the Sliding Mode
	Remark 3: Dimension of Sliding Hyperplane



	Sliding Dynamics
	Equivalent / Reaching Control
	
	
	Theorem 2 Continuous SMC Design for Nonlinear Systems



	SMC Stability Criterion for Nonlinear Systems
	
	
	Corollary 1: Stability Criterion



	Numerical Examples
	
	
	
	References





