Bief Note on Optimization 04@20240911

©DuyKy Nguyen, PhD EE @ Unitethc.com 2024-10-22
. ©All rights reserved

We're using Rosenbrock to evaluate methods performane as usual in the Optimization literature

2z = 1-%(7+100" (y-x)*
Rosenbrock

140406

120408 _ |

1. Multivariate Calculus
f(x)eR,xeR"

Gradient Vf(x)= a a . i}
| OX  OX, OX,
R -
0% %X, %X,
o*f o*f o*f
Hessian Vf(x)=| a5 x  @%x,  oxx, | ISSymmetric square matrix nxn
’f &t &t
| OX.X O, X, |
For f(x)e R™, x e R"we have Jacobianmatrix mxn
otf, o', 8%y |
0% %X, %X,
o%f, o, % f,
Jacobian Jf (x)= oxx, 0%, o,
&ct, o, &,
XX OX.X, %X,

2. Line Search

Basic therr're 2 types: exact and inexact
Line search plays akey role in method performance



2.1. Exact Line search

It's the simplest but working fine with simple function like |z= x* +3y?

z=(x—1) +100(y - x*
Tthe search direction often has the form mi 0n[f (x, +ap, )]

or using univariate function
¢(a): f(Xk "'apk)z f(xk)+akaTf(xk)+%a2ka2f(xk)pI
minwhenwithg, = Vf(x,), H, = V?f(x, )
#(@)=p V" f(x)+a%V*f(x)pi =P gi +apHpy =0
hence
~ P9 2
a= .0, =VIi(x, ) H =V°f(x
P 0= VI () H = V1)
basicaly it has aform below

Tjg‘[f (Xk + apk)]

0 rusing univariate function
#@)= f(x, +ap,)= f(x,)+ap, V' f(x,)+1a’p, V1 (x, )
minwhenwithg, = Vf(x,), H, = V*f(x, )
#(@)=p V" f(x)+a’p,V*f(x, )Pk = Pgi +apH Py =0
hence

.
a:ﬂ g =Vi (Xk)’ H, :sz(xk)

T

P H Py

-
a_ﬂ Ok =Vf(xk)’ Hk :sz(xk)

T

 peHDx
2.2. Inexact Line search

but not Rosenbrock function

Used in both sime descent method and BFGS method using complicated approx of Hessian as difference of
gradient for search direction conjugate gradient for faster convergence but it works only incase startpoint close

to solution point where the simple descent method still get to solution

Rosenbrock functio has solution point at point (1,1)

BFGS gets to solution from initial point -2, -2) fut fails from far point(-200, -200) while the simple descent

thod smethod still work from that far polintr

Basically it uses descent gradient —Vf (x) to reduce function value f(x) in an ieration loop with initial step

a=1 and update using Wolfe condition 1 W-1 [11-45]

f(xk + akdk)g f (Xk)+ apV' f (Xk)dk’ﬂl € (011)

The Wolfe condition 2 W-2 is [11-47] ratio of new derivative/old<bb2

V' f(x, +ad,)d
V' (x,)d,

k< B, <0<B<pB,<1

2.3. Algorithm inAlgorithm 11.5: Line search

from Optimization:Principles and Algorithms by

Michel Bierlaire http://optimizationprinciplesalgorithms.com

[&]



Objective

2 To find a step a such that the Wolfe conditions (\W-1) and (W-2) are
satisfied.

3 Input

4 The continuously differentiable function f : Rn — R.

5 The gradient of the function V £ : Rn — Ru.
6 A vector x € Rn.
7 A descent direction d such that vV f(x)rd < 0.

8 An initial solution a0 > 0 (e.g. a0 =1).|8,=1
9 Parameters 1 and g2 suchthat0 < 81 < B2<1 (e.g., 81 =10-4 and
B2 =0.99).

10A parameter 1 > 1 (e.g., 1 =2).

11 Output

12 A step a~ such that the conditions (W-1) and (W-2) are satisfied.

13 Initialization

141 :=0.
15|18, = 0],
a

16. |8y = +00
17 Repeat
18if @ violates (W.1) then the stepis too long

1903y =4
_alo+ahi

20|38, =0

2
21if @ a_i does not violate (1W-11.45) but violates (W-211.47) then the step is too short

A =&

ifa,; <ocothen|a, =@

elsela,,, = 18,
Until both W-1 and W-2 satisfied

We haveByTaylor expansion
f(xk"'akdk)z f(Xk)+akdeTf(Xk)
So the Wolfe cond reduces function
3. Algorithm 13.1: Quasi-Newton
method

from Optimization:Principles and Algorithms by

Michel Bierlaire http://optimizationprinciplesalgorithms.com
Just for completeness and curity

but it's too complicated to use in realitydue to accumulated err

Objective

2 Tofind (an approximation of) alocal minimum of the problem

MiNse r. £(x)

slnput

4 The continuously differentiable function f : R. — R.

5 The gradient n- row vector of n g = Vf (X)

Inital point X,

BFGS



Initial approx Hessian inverse ﬁ =1
Required tolerance ¢ >0

Output

Solution ptx’

Init

k=0

Repeat

d, =-H, Vf(x,)

step length aby line search x, ., =X, +ad,

- _ T - _ T T
H, = (| _ dk-Tl yk_lJHk—l[l _ yk-Tl dk—1j+ d_lr_—ldk—l
i Y Ay ) derYia

Update with
dk—l = ak—ldk—l =X = X1
Yia= \4 (Xx)_ N4 (Xx—l)
Until [V (x, )| <
SOLUTION X" =X,
4. Conclusion

Linesearch function hasembedded gradient a=L_S(x) to provide step size yo move tany initial point xcto
solution point
UseThe descent method using line search id the most reliable with simple nalgorithm below

1. Start point row vector X,

Get search dir d, =—-Vf(x,) INnBFGS d, =-H,Vf(x,)

Get step aby linesearch a=L_ S(xy, dy)
Get next point X,,, =X, +ad

Repeat 2 to 2 untril |[Vf (x, )| < & or max iteration reaches

o rw N



	1. Multivariate Calculus
	2. Line Search
	2.1. Exact Line search
	2.2. Inexact Line search
	2.3. Algorithm inAlgorithm 11.5: Line search 

	3. Algorithm 13.1: Quasi-Newton BFGS method
	4. Conclusion

