
Bief Note on Optimization 04@20240911 
©DuyKy Nguyen, PhD EE @ Unitethc.com  2024-10-22 
. ©All rights reserved  
 
We're using Rosenbrock to evaluate methods performane as usual in the Optimization literature 

 
1. Multivariate Calculus 
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x  is symmetric square matrix nxn 

For we have Jacobianmatrix mxn   nm  xxf ,

Jacobian  
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2. Line Search 
Basic therr're 2 types: exact and inexact 
Line search plays a key role in method performance 



2.1. Exact Line search 

It's the simplest but working fine with simple function like  22 3yxz  but not Rosenbrock function 

   222 1001 xyxz   

Tthe search direction often has the form   kk
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basically it has a form below 
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o rusing univariate function 
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2.2. Inexact Line search 
Used in both sime descent method and BFGS method using complicated approx of Hessian as difference of 
gradient for search direction conjugate gradient  for faster convergence but it works only incase startpoint close 
to solution point where the simple descent method still get to solution 
Rosenbrock functio has solution point at point (1,1)  
BFGS gets to solution from initial point -2, -2) fut fails from far point(-200, -200)  while the simple descent 
thod smethod still work from that far polintr  
Basically it uses descent gradient  to reduce function value  xf  xf  in an ieration loop with initial step 

 and update using Wolfe condition 1 W-1 [11-45]  1a

        1,0, 11   kk
T
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The Wolfe condition 2 W-2 is [11-47] ratio of new derivative/old<bb2 
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2.3. Algorithm inAlgorithm 11.5: Line search  

from Optimization:Principles and Algorithms by 
Michel Bierlaire  http://optimizationprinciplesalgorithms.com  



Objective  
2 To find a step a such that the Wolfe conditions (W-1) and (W-2) are 
satisfied. 
3 Input 
4 The continuously differentiable function f : Rn → R. 

5 The gradient of the function ∇ f : Rn → Rn. 

6 A vector x ∈  Rn. 

7 A descent direction d such that ∇ f(x)Td < 0. 

8 An initial solution α0 > 0 (e.g. α0 = 1). 10 a  
9 Parameters β1 and β2 such that 0 < β1 < β2 < 1 (e.g., β1 = 10−4 and 
β2 = 0.99). 
10 A parameter λ > 1 (e.g., λ = 2). 
11 Output 
12 A step a∗  such that the conditions (W-1) and (W-2) are satisfied. 
13 Initialization  
14 i := 0. 

15 0loa . 
a 

16. hia  

17 Repeat  
18 if violates (W.1) then the step is too long  ia

19 ihi aa   

20 
21

hilo
i

aa
a


  

21 if a_i does not violate (1W-11.45) but violates (W-211.47) then the step is too short  ia

ilo aa   

if then hia
21

hilo
i

aa
a


  

else ii aa 1  

Until both W-1 and W-2 satisfied 
 
We haveByTaylor expansion 
    k

T
kkkkkk fafaf xdxdx     

So the Wolfe cond reduces function  
3. Algorithm 13.1: Quasi-Newton BFGS 

method 
from Optimization:Principles and Algorithms by 
Michel Bierlaire  http://optimizationprinciplesalgorithms.com  
Just for completeness and curity 
but it's too complicated to use in realitydue to accumulated err 
Objective  
2 To find (an approximation of) a local minimum of the problem 
minx∈ Rn f(x) 
3 Input  
4 The continuously differentiable function f : Rn → R. 
5 The gradient n- row vector of n   xg f
Inital point  0x



Initial approx Hessian inverse IH ~
 

Required tolerance 0  
Output 
Solution pt  *x
Init 
k=0 
Repeat 

 kkk f xHd  ~
 

step length a by line search  kkk adxx 1

Update 
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Until    kf x  

SOLUTION  kxx *

4. Conclusion 
Linesearch function hasembedded gradient a=L_S(x) to provide step size yo move tany initial point x0to 
solution point 
UseThe descent method using line search id the most reliable with simple nalgorithm below 

1. Start point row vector   0x
2. Get search dir  k  In BFGS k f xd   kkk f xHd  ~

 

3. Get step a by linesearch a=L_S(xk, dk) 
4. Get next point dx  x akk 1

5. Repeat 2 to 2 untril    kf x  or max iteration reaches 
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