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Cacculusis backbone in Science & technology

My working phylosophy is the simplest is the best and the hardest to achieve

It's the best as it takes the lea st effort to complete and to maitain and it's the hardest as it require a deep aware
of the subject in order to remove unnecessaies and keep only the minimum core in the simplest possible
approach

Somedones try their his best to do thing as much complicated as possible just for their eggo that they could do a
very unusual complicated thing

| seeit'svery costly in debuging in maintaining and to be upgraded with new bug fixed and new feature

This Calculus notes starts with Limit for main derivatives [product integer power = Taylor series

We start with limit asabasisfor definition of derivative

By definition of derivative we can get main derivatives derivative of sum of functions and product with a const
not product of 2 functions defered later after logarithmic as multiply = add easier to differentiating

No section of integral as we have to new approach than literature

The logarithmic and exponential function based on derivative and to complete derivative of power of fraction
Trigonometic Derivatives based on Euler identity alot smpler than the way in current literature

Numerical methodhas provided a much simpler to solve differential Eq based on Taylor series alot simpler
than current literature using Kunte gutta and the likes

Logarithmic function is defined from derivative Exponential function is defined as inverserse func of log

We then formulate derivative of product and quotient of 2 func

Derivatives of sin and cos are not based on limit but on Euler formula By the way we revisit sin cos identities
uing this very formula

Laplace transform is a powerful tool to sove differential egs but we don't use Inver Laplace transform bu ather
to use numerical method

| have an article namly Clock Termination using numerical method in improve clock quality for product at my
work place at Symmetricom

Using numerical method to get result in form of graph plot rather function with Inverse Laplace transform to get
However it's hard to see the result impact impact with function. to see the impactsome how we have to do 1
more step for function analysis so it's simpler to use numerical method using MLab laguage with Octave SW
an absolutely free while MLab cost few thoussands for license and Octave appears to me a lot better in an
section of numerical method included in this note

1. Limit
Limit is back bone of Calculus
lim/(x)= f(a+e),3eThereexist aavery small number closeto zero

X—a

Thereareason isit's not allowed to do divide a zero but it's fine using limit
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1.1. Limit Definitions
Per limit definition £(x )= /()

X—a



1.2. Limit properties

By Limit definition

Limit[expression of some f'sf]=expressionof each limit[f] invividually
Provided existence of lim

limla* f £b* g]=*lim[f]£5*lim[g]
lim{f* gj=lim{/}*lim{g

lim[f/ g]=lim[f]/lim[g],lim[g]=0
lim[cf]= clim[f],const ¢

L m[f]
|Im|:§}“m[g],|lm[g]¢0
liml/(x)]=s(a+e)3e~0

1.3. Left&Right Limit
li [1}=+oo
it

i
it
Limit does exist iff[if and only if]leftlim=lim=1lim right limit the same

1.4. Derivative
f(x)= kim[f(ﬂhh)_f(x)}
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h

hence

[xz} )= 2x

Slx)=*

flx+h)=(x+n)
flx+n)-f(x)=(x+nf -x*=h(x+h+x)
witha? —b* =(a—b)a+b)

S(x+h)-f(x)

P =(x+h+x)—>2x

h—0
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1.5. L’Hospital’s Rule and Indeterminate Forms

1.5.1. ndeterminate Forms%orE
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1.5.2. L’'Hospital’s Rule
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2. Derivative & Differentiation

2.1. composite function

f(g(x)=[r-g]x)

o)
[foglx ) flg(x))=g*(x)=(x-3)

2.2. Chain Rule
It's based on Limit properiesLimit of expressionis expression of limitsof individual

df _ df (u) du(x)
dx du dx
Derivative exists iff both left right lim equal

jwﬂzgizugﬂf@+w—f(¥_“n{f %f}_“nﬂyw;fﬂ

dx h h—0* h—0"
fr=fx+h)
f=flx=n)

2.3. Differentiation[diff]for short

df (x)= f'(x)* dx
df (&)= f'(&)* dé&

So diffis very convenience to deal with complicated vcase like func of func

df(g,)=r"( )*dg( )

2.4. Some derivatives
Expression of lim=lim of expression

For easy proofswe'll use new notation /~ =/(x+%) and L=|im

h—0*
Using new notation the derivative definitioncan be rewritten as

ff
[(x)= (L[h])

2.4.1. Derivative of 1/x

fo)=
1 1 —h
farh)=f() _xen x_xleth) -1 , 1
h h h (x+h) "0 ¥

2.4.2. Derivativef of Power



[xz} - [x* x]( )= x%x+x*x'=2x, x'=1
[xs} ) [x* xz} )= x*x% 4+ x* [xz} )= X2+ x* [2x]= 3x?
Similarly
[x"]znx”_l
[x"]: nx"
3. Taylor series

Consider Power series

P(x)=apx’ + ax + a,x® +ax* +--+a x"

PO (x)=ay +a, + a,x" + 2a,x" + 3a,x* -+ na, x"*

Pt
(

)(X)= a, + 2a2x1+2* 3ax+---+n* (n—l)anx"_z

P (x)=2a,+---+2* 3a,
Let
x=0
= P(O)
a, = P(l)(O)
1

a, —EP(Z)(O)
a, =L pd(0)
a :ip@)(o)

"o

So Taylor series

F6)= O+ £ O+ 31 V(04 3 51 (0) -

F(x)= O3 O+ 5 7204 5 O(0) -
Let

X=Z—d

then

x=0=z=a

/0)= 7(a)
fe=a)= O+ (z=a)r o)+ 5 (z-af £Oa)+ 3 -aP £ a)+
fe=a)= O+ (z=a)rOf(a)+ 5 (z-af £ Oa)+ 3 -af £ a)+



4. Logarithmic, Natural Log &Exponential funtion
4.1. Logarithmic, Natural Log

O
Derivative of quotient is {f(x)} _f g—zg f
g(x)

g
L 1. -1
Derivative of function= is—
X X

On the othersidewhat function whose deruvativeis1 It isthe logarithmic function known as natural log

X
flog(x)} /=2
X
4.2. Exponential funtion

Every function hasitsinver se version define as

y=/fx)ex=1"(y)

For example
I Y
y=f)=2xex=f')=2
So exponential function isinverse of log function
Log Exp
2 200
15 150
1 100
0.5 50
0 0
1 2 3 4 5 1 2 3 4 5

y=log(x) = x=exp(y)=e’,e=23.71828
4.3. Properties of function log and exp

y=lg(x)=x=¢" = el
and viceversa

Ig(e"):x

(a+b) a%x b

e =e e

a+b= Ig(e“ * eb): |g(e")+ Ig(eb)

4.3.1. So log of product is sum of log
lg(c* d)=1g(c)+1g(d)

4.3.2.log base a



yv=a" <:>x:la(y)
taking Ig on both side

|gy=x|ga<:>x=||g—y
a
Ig(»)
la\y)=
0) Ig(a)

4.4. Derivative of product

f(x)=ulx)* v(x)

let f.= f(x)

lg(,)=1g(/.)+lg(g.)

df _du  dv

f u v

df = v*du:—u*dv
u*v

Multiply x to bothside
v*dudx +u* dv* dx

df * dx = *
u v
_utv+u*rvy
o uv
4.5. Derivative of quotient
ul(x)
flx)= )
let f,=f(x)
l9(/.)=19(1,)-1d(g.)
& _du_dv
f ou v
df:v*du:u*dv
u-v

Multiply x to bothside
* PYE 1 *
df*dxzv dudx —u™* dv* dx

*

u-v

uv
4.6. Euler's formula



AIm::i

ising

cosg Re

¢ =cosg+ising

e’ =cosg+ising
5. Derivative of Trig function

Taking derivative of Euler formulato have
ie"” =cosg+isin'g
i(cost+ising)=cos¢+isin'¢
(—sinicos+ising)=cos ¢ +isin'¢g

equate Im and Re part to have

cos'p =-s8in

sin'¢g = cos



6. Sin Cos identities
expla +b)=exp(a)* exp(b)

cos{a +b)+i*sin(a +b)=[cos(a)+i* sin(a)]* [cos(b)+i* sin(b)]
= [cos(a)cos(h)—sin(a)sin(h)]+i * [sin(a)* cos(h)+sin(b)* cos(a)]
Equate Re_part and Im_part to have

exp(a +b) = exp(a)* exp(b)

cos(a +b)+i*sin(a+b)=[cosla)+i*sin(a)]* [cos(b)+i* sin(b)]
= [cos(a)cos(h)—sin(a)sin(b)]+i* [sin(a)* cos(h)+ sin(b)* cos(a)]
cos(a +b) = cos{a)cos(b)—sin(a)sin(b)

sin(a +b)=sin(a)* cos(b)+sin(b)* cos(a)

7. Derivative of Inv Trig function

The goal isto find Taylor seriesto compute Pi arctan(l) = %
7.1. Derivative of arctan
y=actanx < x=tany
siny ) cos’y+sin’y 1

dce=d(tany)dy=d dy = (1+tan® 1+ x :>

(tany)ay (COSyj cos’ y ( y)dy ( )dy dx T 14y
hence

=1+ )’ 0)=1
1+x
—2x(1+x )2

2
=—2(1+x J ol ):>f ( )=-
Keep taking derivativefor higher orderfor Taylor seriesto comput Pi values
All even order derivativesare ZERO thusonly odd order

2

arf(x)= £(0)+ o (0)+ 3 r7(0)+ % f<3>(o>:x_x_3+x_lz[<_ly W"“j

3 5

7.2. Derivative of arcsin

ncase xe{o,%}zx>O,Sinx>0,COSx>O,tanx>0,COtx>O

y=arcsinx < x=sSny
Asumming cosy >0

dx =d(siny)=cosydy = 1+ sin? ydy:>dy 1 !
\/1+sm v \/1+x

. 1x* 1*3x°
arcsiny =x+=—+ - =
23 2*45

. Using 2 Tthousandsterms termswe have Pi= 3.141642651089887




. Using 2, billion terms 000,000,000 we have :
3.141592658505056867568328016204759478569031000000000
Arcsin cannot be used dueto the product becometo large and cause over flow

sin’ =garcsin=asin
cos’ = acos
tan’ = atan

y:czsin)c<:>x:siny:)cz:Sinzyzl—COSZy:COSy:\/l—Sinzy:\/1—x2
dx=d(siny)=cosy*dy =
aSin'xzd—y: 1 = !
dx COSy 1-x2
Similarly
¥ =aC0Sx < x =C0Sy = dx =—Sinydy
x*=c08’ y=1-sin®y =8N’y =1-c0S"y < Siny = /1-cos’ y

dx = —J1-cos’ y * dy =1-x* * dy

aCOS'(x)=Q= 1

dx  \1-x?
y:atanx<:>x:tany:>dx=(1+tanzy)dy:(1+x2)dy
dy 1

atan'x=—= 5
de 1+x

8. Continous function and delta Dirac function
8.1. Continous function

A smooth function £(x) is any curve for which f(x) ~r0 (t) is continuous afor anyx t except possibly
at the endpoints. Sine function is continuous function but step functions(x) beloweis not
It'sdiscontinuous a x = a due to difference in leftright limit

liml/(x)]=0

x—a

liml/(x)]=1

x—a*

A smooth curveisany curve for which ~r0 (t) is continuous and ~r0 (t) 6= 0 for any t except possibly

at the endpoints. A sine function isasmooth function
8.2. Delta Dirac function

Dhe delta Dirac function (or d distribution), also known as the unit impulsee Dirac delta function (or d
distribution), also known as the unit impulsewidely used in digital technology i



0

xllrar}[5(x)]
s(x)={“:“ il

O0,x#a

X—a

JLT[é(x)]:O¢IimXE(x)]:l

a [, 4

with nolimit exist butDiract funcis ?erivative of step function

ﬁ=5a(x):0,x;«ta
x

A

By defition Diract func is defines as derivative of unit step func

s(x)= {l ¥Z4 9 by defitionof integral

0, otherwise
Ié‘(x)dx:l
9. Analog & Digital signal

All natural signalsin realword are continuousanal ogd type like music soundsoundtime
But currently they are converted to digital type used in modern device like smart phone
A Device ADC[Anaog Digital Converter]use to convertanalog to digital

—> —

The ADC his composed of 2 phaseg1] sample to put out impulse response [2] Hold to convert impiulse
response to stair response Time between 2 adjacent samples called sampling time

ADC quality is determineby 2 factor

[1] Sampling time:higher sampling time closer to analog signal

[2]resolution:how numberof bit in converteddigital signal , known as precision. higher precision closer to
analog signa



Impulse of Sinewave
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Analog signals are continuous-time signals. Discrete-time signals, Or discrete signals for short, take finite
values of any real numbers, hence the difference of successive valuesisfinite and isareal number.

Gradient&Hessian&Jacobian
Only Jacobian matrixmrow, ncolswork for m-vector function (x)e R",x €

% o A

VI | Ox;  Ox, ox,
vl % %
J=1 oy, ox, ox,
Vi) o o
ox, v, ox,

The others workfor scalar viue function £(x) e R,x €”

GRAD:vf{i ag. . i}

ox, Ox, Ox

n

-3 L L Ll i, i) vrea

8xl axz axn
_ azf 82f a2f ]
ale axlaxz a)Claxn
of ef
HESSIAN = vzf = 8x28x1 82x2 a‘X"Za‘xn
*f  &f &S
| Ox,0x,  Ox,0x, 0x, |

Taylor series

f(X +as)= f(x +as)+ as"VF(x +as)+%astV2f(x* Taslste+
Theorem 1: Grad is direction of max change
f(x* +as):f(x*)+ asTVf(x*)+%astV2f(x*)s

FX +as)= £(x)+ a[s‘Vf*‘cos«s, Vf*>)]+%astV2f(x* ks, s=|g
Thechange [s‘Vf ' ‘cos(<s, vf >) ismax when ws(<s, vf >)= Li.esindirection of Vf~
QBD
Rolle's Theorem
f'(c)=0, ce(a,b)
Casel f(x)=const= anyxe(a,b)f'(x)=0
fla)< f(b)= anyxe(a,b)f"(x)=0
3d €(a,b): f(d)> f(a)

Case 2



Casel f(x)=const= anyxe(a,b)f'(x)=0
Mean value Theorem
Mean value Theorem

¢'(c)= WC’ € (a,b)

y
A
(b,f(b
(a,f(a))
(c,f(c))
X0 a c b
Y!
10. Integral

We have defition of derivative

f'(x):%ZLiﬂg{f(“hh)‘f(x)}

We may have integral definition
f=>.df = f'(x)dx aso known as Riemann sum

f()=[df (x)=[ 1 (x)ex

10.1. Integral of Delta Dirac func

A

lx=a 1
S(x)_{o,x;ta
a B
5,(x)=0,x#a

By defition Diract func is defines as derivative of unit step func
>
s(x)= La>a 50 by defitionof integral
0, otherwise

Dirac function has been used widely in real tekworld wehere its pulse width very small depending on
application



[8(x)ax =1
Derivative of DeltaDirac is undefine but itsintegral is defined
J.jw§ (x)dx =1

We may seeintegral isan inverse of derivative f:de

So from derivative result above
We have

jx”dx =

xn+1

n+1
10.2. Integral by part

d[uv]= vdu + udv
judv = uv—judv
11. La-placeTransform

11.1. First derivative
Laplace transform of function £(¢), € (0,0)is defined as function of complex var s =0+ jo,o = 2af

clr (t)lf(s):j: f(z)e™'dt That's why Laplace transform analize an time domain function in frequency

domainto make a lot easier in the world of science tek Like multipication of 2 function in frequncy
domainknown as convolution coresponds to multiplication of these func in time domain

Impedance of capacitor and inductor can be derived using Laplace transform for circuit analysis

First to find Laplace transform for deriative asit'sused for differentia eq

s)= J.: f(t)edt
bypart
J.vdu :uv—J-udv
du=f"(t)dt = u=f(r)
v=e " =>dv=—se "dt
rl=le @ +s] f)ear
a9 (t)] ( )=sF(s)

<r@l=sF(s)- 10

11.2. Second derivative

~
=
%)
Q

(s)- g(O)
=s[sF(s)—f(0)]—f() ?F(s)-s(0)-1"(0)
@)= 52k (s)-s7(0)- 1(0)

Similarly for n-order derivativ f( )



Slrl= s (9)=5"21(0)-521(0)- "1 (0) 51 (0)

sum of power of sand derivativeordrer equal n-1

e F(5)-5£(0) -5 1(0)-5 2/ #/0)- £ (0) V
L{f™} = s"L{f} — "1 £(0) — s"2f'(0) — s" 2 f"(0) — ... — f%‘”(ﬂ)

12. Capacitor Impedance
We have Capacitor law

i= C% = I(s)=C[sV(s)-v(0)]= sC* ¥ (s)C - C* v(0)=sCV(s), v(0)=0

[(S):SCV(S)
hence Imdedance of capacitor
V(s) 1
Zo=—R=""
I(s) sC
13. Inductor Impedance

We havg Inductor law
V= L% =V(s)=L[sI(s)-i(0)]=sL* I(s)- Li(0)=sL* I(s)L* i(0), —i(0)=0

V(s)=sL* IV (s)
hence Imdedance of Inductorcapacitor
Z, = @ =sL

1(s)

14. Brief Note on MLab

we can put our own M function in dir say "c:\Octave\dkn
and add this dir into the code using our Mfunction there with
addpah(:\Octave\dkn)

Octave, but not MLab, supports cmd line to run m code

Both index start at 1 like old laguage fortran used in Linpack[linear algebra packege not zero likein modern
language

[] used for vector

() used for index start from 1

To create vector vof 10 values

For loop of i =1:10

v(i)=i

endfor

The best feature of both is support varying number of input arg to afun yusind varargin

function y= chkk(varargin)

x_1= varargin{1} 1st ard

xx=varargin{nargin} last arg

end function

This the most impressed feature of Octave over MLab so | can do run and edit Mcode at the time so I'm not
distracted by leave editor to IDE and fully focus pon the code

Bavo awsome Octave free and alot better than MLab

Honestly Octave run at half speed of MLab but it doesn't matter to me during in devel opment



Both support function of generral prams

We have to openMLab ideto run M code

Mlab use % for comment but Octave use #

Both use; to supress printout var alue

Blk comment ust with {}

#{ open blk comment in Octave %{ in MLab

MLab use end for blk code of function for while if and last index of vector
Octave use endif endfor endfunction end used only aslast index of vector
Thisis a better feature of Octave to chk blk code

Thisis better feature Octave as % isrenaider operator 3%2=1

Both have the same syntax in block code start with statement and end at new statement orat end
MLab uses

if ... # start here

elseif #end of if

else #end of else if

end #end of else also end of the whole if

end #end

Only Octave, but not MLab, support unary oparator

n++; not print out value of n

X+=n print out value of x

Both require name of file withfunction code same as function name

To do gik chk of afuncon aacode say abc.m we have to put clear all at the top ofd code abc.mso we can put a
funtion xyz inside otherwise we have error due to function name diff than filenamecodefile

15. Numerical Method

To present asimple and comprehensive approach for numerical
15.1. Definite Integral

It's easy to look at using definite integral to find area
Simply using

AZZ( )yk* (xk+l_xk)

Or more acurate

A= Z|:yk T Vi« (xk+l_xk):|

2
To find area of quater of unit circle x>+ y* =1= y =yJ1-x°
The exact areis %Error with Rectangle is1.659048425702050e-03
while Err with Trapzoid is 8.590660923892693e-05 so better by 2 order



R

Vi
Vi

Vi

15.2. Differential eq [DE] Err with Rectanl

For solution of Ddifferential EQ[DE], current numerical method've using Euler method relying on runge kutta

4th order method NO Er wlt#(}m:l;to p‘

Any differentialable function can be determine by tTe welknown Taylor series using Its derivative
n-th order, the more the better

In current literature there're so many different methods like Fourth-order Runge—Kutta method
Adams-Bashforth 2-step method

Adams-Bashforth 3three-step method

Adams-Bashforth 4four-step method

Milne’s method

Adams-Moulton 2two-step method

Adams-Moulton 3three-step method

That'sal | found You may find more

So it'sobviouly Taylor seriesis the best way to solve DE and this note is about it

15.2.1. 1 Order DE

y'+ay=0

Yo _a

y

¥(t)=exp(-at)

SO

W =—ay

W = gy s
==y

WW=—y

yW=—y



1000

1st orderDE using Taylor approx= 1-Order
T T T

Exact
- Appraximate

1.5

(]

1
Step=0.001 SumSqErr=4.612956e+04

1st orderDE using Taylor approx= 3-Order
T T T

1000 |

- Exnet
+ Appraximate

1000

1 15 2
Step=0.001 SumSqErr=2.614450e-08

1st orderDE using Taylor approx= 6-Order
T T T

Exact
- Appraximate

05 1
Slep=0.001 SumSqEr=2339618e-20

‘st orderDE using Tayler approx= 3-Order

1400

400

5 1 15 2
Step=0.001 SumSqEr=2.448638e+08



{ih 1st orderDE using Taylor approx= 5-Order

Exact
Approximal le

0.5 1 1.5
Step=0.001 SumSqEm=2.448638e+08

15.2.2. 2"4 Order DE

Remark 1

Asy'isasignificant component in Taylor series so itsidnoranceand resultsin significant big err
So we must find it using integral asillustrated in example below

yV'+ay'+b=0

@
Integrating for y(l)
o =
Differentiating for y("),n >3
3 = —gy®@

y(") = —ay("_z),n >3

sY +asY+b=0

= —ay(l) -b

—ay — bt

-b A B
Y= =—+

s(s+a) s Ss+a
a=-t

a
g=2

a

Y :2[1_ 1 }
y(t)=—§[1— e

. Err=7.652528047444004e+01 I f ignore y'

. Err =4.457935854841033e-03 if y' used so Err is3 orger larger
So y' must be used for less err



2nd order DE using T: = 9-Ord
& 2nd order DE using Tayler approx = 3-Order Op .n -k LusTg alylor APpIOX 2 ". Bacl
n T T T h" B 1
E{M%ngimn Approimate
0zb 02k
6
04 | 04
08 ] o8k
08k i . J 08 F
4 s s A a
1] 05 1 15 2 0 05 1 1.5 2
Step=0.010 SumSqErr=4.457962e-03 Step=0.010 SumSqErr=4.457936e-03
2 .
© N1-y°, if (t<7/2
y@ =cost =

—1-y?, else
(2 _

y& =—ay®—b

Integrating for y(l)
y(l) -
Differentiating fory("),n >3

—ay — bt

g8

s’Y +asY +b=0

-b A B
Y=—"s=—+
s(s+a) s s+a

b
a

yzé[l_ 1 }
als s+a

y(t)= —3[1— e

2nd order DE using Taylor approx = 3-Order
T T T T

T 2nd order DE using Tayler approx = 6-Order
-E;z:\xlmal.a. 1 ! 1

T Eact
Approximate

(X

/ 08

/ \ \
Ll N 1 06 b X,
; |
Lo 0.4
o2t F g o2k
ok s L L s ' LB ok i
o 0.5 a 35 4] 0s 3 35

1 15 2 25 1 1.5 2 2.5
Step=0.010 SumSqErr=1.947505e-04 Step=0.010 SumSqErr=1.949934e-04

If y' inored Err=157.08 else Err=1.9475e-04 the Err isof 4 order larger



Now we've got enoughto start solvinfg diff ed numerially

Westart with simple diff eq to illustrate the proedure

It's simple eoughto get it exact solution functio to check err between the exact and our numerical estimate
We have

y'=Ky

SO

Yk

Y

multiplybothsides with dx to have
ydx = Kdx

y S

or

4 = Kdx
y
Taking integral to have

Kx

|ny=Kx:>y=f(x):e

Using Taylor seriesto estimatey where f)(x)n-order derivative

1)~ £0)+ 371 (0)+ 22 790)+ 2705~ (o)

In our given case we have the sucessve derivative different by a factor K
In gerneral case a diff eq provide weher to get higher detrivative say fromdiff eq of 2nd order we can find 3rd
derivative etc

We have

Px)=Kf(x)

yln)=Kf"

so the algorithm for Taylor series estimate up to order N

Let y be estimate solution by Taylor seies, yd be the vector of derivative up to N values used in Taylor series
set initial value y(1)=f(0) index start at 1

yd(1)=K*y(1)

Just add term with detrivativetoy upto N

so below is the M code addpath('C:\Octave\dkn'); # our factorial

N=1

#m=1;

K=2;

y0 = -6; % Initial Condition

h = 0.001;% Time step

#A=0

tt = 0:h:2; % tt goes from 0 to 2 seconds.

yy = zeros(size(tt)); % Preallocate array (good coding practice)
Err=zeros(size(tt));

z = yO*exp(K*tt); % Exact solution (in general we won'tt know this)
yy(1l) = yO; % Initial condition gives solution at tt=0.

y(2)=yO0;

END=Ilength(tt)-1;% NOT rserved word "end" as lasr index of vector
yd=ones(1,N);



HHUHBUHBUHBHBHBHBHBHERERERERBRBRBRBRBBHBHBHBHBHEHEREHEHH
HEHBHAHBHBHBHBHBHGR B R R BB H R HBHBHBH T
for n=1:END
HAHBUHBHBHBHBHBFHBEHRERERERERBRBRBRBRBRHBHBHBHBHBFHEREHEHRH
HHHBHBHBHBHBEHEHREHERERERERE RS>

yd(1) = K*(yy(n)); % y=yOdot=K(A-y)-->yd(1)=-Ky -->yd(2)= -Ky_ldot --
>yd(3)= -Ky 2dot

yy(n + 1) = yy(n) + h*yd(1);

for k=2:N

% Keep taking derivative of y_dot
yd(k) = K*yd(k-1);

yy(n + 1) += h~k/fa(k)*yd(k);
endfor #k
HUHUUHHUBRBUEHUER B BB B R BERBERBER BB ERBERBERBE R ERE RS
HUHUHUHHBUHHBUHHBUHH PR BBH PR B R B SR TSR H#

endfor #END

err = yy-z;

err2=err.” 2;

mean_Sum_Sqr_Err = sum(err2)/END
Tool completed successfully

16. Result summary

Order of derivative Mean SumSqr Err

0.1671

7.4490e-08

1.8619%e-14

3.0144e-21

6.4282e-24

6.4282e-24

6.4282e-24

6.4282e-24

6.4282e-24

O OORNOUN L WN -

6.4282e-24

Note Just 2nd derivative err give sprisely little errhasderivative order 8 and 9 hassameerr




17. Clock Termination

um of power of sand derivative ordrer equal n-1

begin with s"F (s )then substract all power s- - withderivative order from 0, ief (0)
then derivativeorder + + till (n-1)

clr=sF(s)-s2£(0)- 521 %(0)- 5" ?(0)- 1 *(0)

A back plane widely used in asignificant server in digital comunication system to make it adaptive to customer
request with a primary board and optional secondary bard to customer need

It's has nonle passive component like RLC butit's required clocok quality Some system ill behave due to bad
clock quality

In my case to fix this problen for amain product XLI had it ioption card FTM( Frenquency Time measurement )
it report double frequncy for poerline frequency of 50 Hz dueto clock reflection per bad termination

| used transmission line to model clock trace and MLab simulation is matched with the real clock problem on

A model of transmission line is composed of inductor L in serieq[ /* Ax] and capicitor in parallel[shunt] Cper
lengthx /* Ax

Noter isdistributed seriesresistance while g isdistributed shunt conductancso g ;tl
r

* *
v( ) I* Ax+7r* Ax

L': v(x+‘Ax,t)

G ksl (x(ﬁ?’i)t
v(x,7) Ve Ax+g*Ax y(x+Ax,z)
sowe havev eq
v(x)E v(x,t)
i(x)z i(x,t)

v=[1* Ax]* +[r* Ax]* i +v(x + Ax)
v(xw)_v(x):_m*z*[%’f)w*i(x,z)}
v(x+Ax,z)—v(x,t):_I{%H*l}

Ax

let

Ax—0

toget
ox

oled)_ [, 0]
ox ot

andi eq

:—[Z*+r*i]



Iy (x,t) = i(x,t)— i(x + Ax)
8v(x+Ax,t)

icg(x,t):g*Ax*v(x+Ax,t)+c*Ax* Py

ov(x + Ax,?)
ot

i(x,t)—i(x+Ax)= g* Ax* v(x + Ax,t)+c* Ax*

'(x,t —
i(x,2)—i(x + Ax) p—— v(x + Ax,¢)
Ax ot

i(x+Ax)=i(x)+ g* v(x+Ax) = i(x + Ax)-=i(x)+ g * v(x + Ax)
i(x,t):[c*Ax]*%+[g*Ax]* v+i(x+Ax,t)

i(x+Ax,t)—i(x,t):—Ax*[c*%+ g*v(x,t)}

Similarly we have
di(x,t) [ ,ov }
— Y =—|cT—+g7v
ox | Ot
Eventually we have an system of dif eq

v(x,1)=— l*ﬁwtr*z}

i(x,t)

Il
l%
9}

*
ISP
_I_
oQ
*
<
[

Simply simplify the eq system by Laplace transform
W)= —[Z*%+r* l} 1 (s) = =1 [s1(s)+i(0)] - r* 1(5)
i —_| % @ * :|

z(x,t) [c o +g%v

. — | % @ *

z(x,t)— [c Py +g v}
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