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Cacculus is backbone in Science &technology 
My working phylosophy is the simplest is the best and the hardest to achieve 
It's the best as it takes the lea st effort to complete and to maitain and it's the hardest as it require a deep aware 
of the subject in order to remove unnecessaies and keep only the minimum core in the simplest possible 
approach 
Somedones try their his best to do thing as much complicated as possible just for their eggo that they could do a 
very unusual complicated thing 
I see it's very costly in debuging in maintaining and to be upgraded with new bug fixed and new feature  
This Calculus notes  starts with Limit for main derivatives [product integer power  Taylor series  
We start with limit as a basis for  definition of derivative  
By definition of derivative we can get main derivatives derivative of sum of functions and product with  a const  
not product of 2 functions defered  later after logarithmic as multiply   add easier to differentiating 
No section of integral as we have to new approach than literature  
The logarithmic and exponential function based on derivative and to complete derivative of power of fraction 
Trigonometic Derivatives based on Euler identity a lot simpler than  the way in current literature  
Numerical methodhas provided a much simpler to solve differential Eq based on Taylor series  a lot simpler 
than current literature using Kunte gutta and the likes 
Logarithmic function is defined from derivative Exponential function is defined as inverserse func of log 
We then formulate derivative of product and quotient of 2 func 
Derivatives of sin and cos are not based on limit but on Euler formula By the way we revisit sin cos identities  
uing this very formula 
Laplace transform is a powerful tool to sove differential eqs but we don't use Inver Laplace transform bu ather 
to use numerical method  
I have an article namly Clock Termination using numerical method in improve clock quality for product at my 
work place at Symmetricom 
Using numerical method to get result in form of graph plot rather function with Inverse Laplace transform to get  
However it's hard to see the result impact impact  with function. to see the impactsome how we have to do 1 
more step for function analysis so it's simpler to use numerical method using MLab laguage with Octave SW , 
an absolutely free while MLab cost few thoussands for license and Octave appears to me a lot better in an 
section of numerical method included in this note 
1. Limit 

Limit is back bone of Calculus 
      zero  toclosenumber  small very a aexist  There,lim 
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The realreason is it's not allowed to do divide a zero but it's fine using limit 
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1.1. Limit Definitions 

Per limit definition    afxf
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1.2. Limit properties 

By Limit definition 
Limit[expression of some f'sf]=expressionof each limit[f] invividually 
Provided existence of lim 
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1.3. Left&Right Limit  
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Limit does exist iff[if and only if]left
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1.4. Derivative 
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1.5. L’Hospital’s Rule and Indeterminate Forms 

1.5.1. ndeterminate Forms
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1.5.2. L’Hospital’s Rule 
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2. Derivative & Differentiation 

2.1. composite function 
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2.2. Chain Rule 

It's based on Limit properiesLimit of expressionis expression of limitsof individual 
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Derivative exists iff both left right lim equal 
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2.3. Differentiation[diff]for short 
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So diffis very convenience to deal with complicated vcase like func of func 
     dgfgdf x *'  

2.4. Some derivatives 

Expression of lim= lim of expression 

For easy proofs we'll use new notation  hxff 
 and lim
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Using new notation the derivative definitioncan be rewritten as 
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2.4.1. Derivative of 1/x 
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2.4.2. Derivativef of Power 
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3. Taylor series 

Consider Power series 
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So Taylor series   
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4. Logarithmic, Natural Log &Exponential funtion 

4.1. Logarithmic, Natural Log 

Derivative of quotient is 
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Derivative of function
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On the othersidewhat function whose deruvative is
x

1
 It is the logarithmic function known as natural log  
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4.2. Exponential funtion 

Every function has its inverse version define as 
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So exponential function is inverse of log function  
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4.3. Properties of function log and exp 
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4.3.1. So log of product is sum of log 

    dcdc lglg*lg   

4.3.2. log base a 
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4.4. Derivative of product 
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4.5. Derivative of quotient 
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4.6. Euler's formula 
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5. Derivative of Trig function 

Taking derivative of Euler formula to have 

 
 

have part to Re and Im equate
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6. Sin Cos identities 
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Equate Re_part and Im_part to have 
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7. Derivative of Inv Trig function 

The goal is to find Taylor series to compute Pi  
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7.1. Derivative of arctan 
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7.2. Derivative of arcsin 

ncase 0cot,0tan,0cos,0sin,0
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. Using 2 Tthousands terms  terms we have Pi= 3.141642651089887  



. Using 2, billion terms 000,000,000 we have : 
3.141592658505056867568328016204759478569031000000000 
Arcsin cannot be used due to the product become to large and cause overflow 
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8. Continous function and delta Dirac function 

8.1. Continous function 

A smooth function  is any curve for which xf  xf  ~r0 (t) is continuous afor anyx t except possibly 

at the endpoints. Sine function is continuous function but step function  xs  belowe is not 
It's dis continuous at ax  due to difference in leftright limit 
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A smooth curve is any curve for which ~r0 (t) is continuous and ~r0 (t) 6= 0 for any t except possibly 
at the endpoints. A sine function  is a smooth function 
8.2. Delta Dirac function 

Dhe delta Dirac function (or d distribution), also known as the unit impulsee Dirac delta function (or d 
distribution), also known as the unit impulsewidely used in digital technology i 
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By defition Diract func is defines as derivative of unit step func 
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9. Analog & Digital signal 

All natural signals in realword are continuousanalogd type like music soundsoundtime 
But currently they are converted to digital type used in modern device like smart phone 
A Device ADC[Analog Digital Converter]use to convertanalog to digital 

 
The ADC his composed of 2 phases[1] sample to put out impulse response [2] Hold to convert impiulse 
response to stair response Time between 2 adjacent samples called sampling time 
ADC quality is determineby 2 factor 
[1]Sampling time:higher sampling time closer to analog signal 
[2]resolution:how numberof bit in converteddigital signal , known as precision. higher precision closer to 
analog signa 
 



  



Analog signals are continuous-time signals. Discrete-time signals, or discrete signals for short, take finite 
values of any real numbers, hence the difference of successive values is finite and is a real number. 
 
 

Gradient&Hessian&Jacobian 
Only Jacobian matrixmrow, ncolswork for m-vector function   nm  xx ,  
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The others workfor scalar vlue function   nf  xx ,  
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QED  
 Rolle's Theorem 
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Case 2 
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Case1       0',  xfbaxanyconstxf  
Mean value Theorem 
Mean value Theorem 
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10. Integral 

We have defition of derivative 
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We may have integral definition 
   dxxfdff ' also known as Riemann sum 
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10.1. Integral of Delta Dirac func 
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By defition Diract func is defines as derivative of unit step func 
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Dirac function has been used widely in real tekworld wehere its pulse width very small depending on 
application 
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Derivative of Delta Dirac is undefine but itsintegral is defined 
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We may see integral is an inverse of derivative  dff  

So from derivative result above 
We have 
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10.2. Integral by part 
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11. La-placeTransform 

11.1. First derivative 

Laplace transform of function is defined as function of complex var     ,0, ttf fjs  2,   

      
 

0
dtetfsftf st  That's why Laplace transform analize an time domain function in frequency 

domainto make a lot easier in the world of science tek Like multipication of 2 function in frequncy 
domainknown as convolution coresponds to multiplication of these func in time domain 
Impedance of  capacitor and inductor can be derived using Laplace transform for circuit analysis 
First to find Laplace transform for deriative as it's used   for differential eq 
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11.2. Second derivative 
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Similarly for n-order derivative    tnf
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12. Capacitor Impedance 

We have Capacitor law 
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hence Imdedance of capacitor 
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13. Inductor Impedance 

We have Inductor law 
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hence Imdedance of Inductorcapacitor 
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14. Brief Note on MLab 

we can put our own M function in dir say "c:\Octave\dkn 
and add this dir into the code using our Mfunction there with 
addpah(:\Octave\dkn) 
 
Octave, but not MLab, supports cmd line to run m code 
Both index start at 1 like old laguage fortran used in Linpack[linear algebra packege not zero likein modern 
language 
[] used for vector 
() used for index start from 1 
To create vector vof 10 values 
For loop of i =1:10 
v(i)=i 
endfor 
The best feature of both is support varying number of input arg to a fun yusind varargin  
function y= chkk(varargin) 
x_1= varargin{1} 1st ard 
xx=varargin{nargin} last arg 
end function 
This the most impressed feature of Octave over MLab so I can do run and edit Mcode at the time so I'm not 
distracted by leave editor to IDE and fully focus pon the code 
Bavo awsome Octave free and a lot better than MLab 
Honestly Octave run at half speed of MLab but it doesn't matter to me during in development 



Both support function of generral prams 
 
We have to openMLab ide to run M code 

 

ent in Octave %{ in MLab 
x of vector 

his is better feature Octave as % is renaider operator 3%2=1 
nd at new statement orat end 

rt here 

 if 
o end of the whole if 

ut not MLab,  support unary oparator  

on code same as function name  
t the top ofd code abc.mso we can put a 

o present asimple and comprehensive approach for numerical 

finite integral to find area 

or more acurate 

Mlab use % for comment but Octave use #
Both use ; to supress printout var alue 
Blk comment ust with {} 
#{ open blk comm
MLab use end for blk code of function for while if and last inde
Octave use endif  endfor endfunction end used only as last index of vector 
This is a better feature of Octave to chk blk code  
 
T
Both have the same syntax in block code start with statement  and e
MLab uses  
if ... # sta
elseif #end of if 
else #end of else
end #end of else als
end #end 
Only Octave, b
n++; not print out value of n 
x+=n print out value of x 
Both require name of file withfuncti
To do qik chk of a funcon a a code say abc.m we have to put clear all a
funtion xyz inside otherwise we have error due to function name diff than filenamecodefile 
15. Numerical Method 

 
T
15.1. Definite Integral 

It's easy to look at using de
Simply using 

  kyA  *  kk xx 1  

  



 

 kk yy
A 1  kk xx 1*

2
 

To find area of quater of unit circle 222 11 xyyx   

The exact are is 
4


Error with Rectangle is1.659048425702050e-03  

while Err with Trapzoid is 8.590660923892693e-05 so better by 2 order 
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15.2. Differential eq [DE] 

For solution of Ddifferential Eq[DE], current numerical method've using  Euler method relying on runge kutta 
4th order method 
Any differentialable function can be determine by tTe welknown Taylor series using its derivative from 1st to 
n-th order, the more the better 
In current literature there're so many different methods like Fourth-order Runge–Kutta method 
Adams-Bashforth 2-step method 
Adams-Bashforth 3three-step method 
Adams-Bashforth 4four-step method 
Milne’s method 
Adams-Moulton 2two-step method 
Adams-Moulton 3three-step method 
That's all I found You may find more 
So it's obviouly Taylor series is the best way to solve DE  and this note is about it 
 

15.2.1. 1st Order DE 
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15.2.2. 2nd Order DE 

Remark 1 
As y' is a significant component in Taylor series so its idnoranceand results in significant big err 
So we must find it using integral as illustrated in example below 
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. Err= 7.652528047444004e+01 If ignore   'y

. Err = 4.457935854841033e-03 if y' used so Err is 3 orger larger  
So y' must be used for less err 
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If y' inored Err= 157.08 else Err= 1.9475e-04 the Err is of 4 order larger  



Now we've got enoughto start solvinfg diff ed numerially 
Westart with simple diff eq to illustrate the proedure 
It's simple eoughto get it exact solution functio to check err between the exact and our numerical estimate 
We have 
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Using Taylor series to estimate y where   xf n n-order derivative 
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In our given case we have the sucessive derivative different by a factor K 
In gerneral case a diff eq provide weher to get higher detrivative say fromdiff eq of 2nd order we can find 3rd 
derivative etc 
We have 
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so the algorithm for Taylor series estimate up to order N 
Let y be estimate solution by Taylor seies , yd be the vector of derivative up to N values used in Taylor series 
set initial value y(1)=f(0) index start at 1 
yd(1)=K*y(1) 
Just add term with detrivative to y up to N 
so below is the Mcode addpath('C:\Octave\dkn'); # our factorial 
N=1 
#m=1; 
K=2; 
y0 = -6;         % Initial Condition 
h = 0.001;% Time step 
#A=0 
tt = 0:h:2;        % tt goes from 0 to 2 seconds. 
yy = zeros(size(tt)); % Preallocate array (good coding practice) 
Err=zeros(size(tt)); 
z = y0*exp(K*tt);   % Exact solution (in general we won'tt know this) 
yy(1) = y0;      % Initial condition gives solution at tt=0. 
y(2)=y0; 
END=length(tt)-1;% NOT rserved word "end" as lasr index of vector 
yd=ones(1,N); 



#####################################################
###################################fa 
for n=1:END 
#####################################################
################################### 
  yd(1) = K*(yy(n)); % y=y0dot=K(A-y)-->yd(1)=-Ky -->yd(2)= -Ky_1dot --
>yd(3)= -Ky_2dot 
   yy(n + 1) = yy(n) + h*yd(1); 
 
for k=2:N 
  % Keep taking derivative of y_dot 
yd(k) = K*yd(k-1); 
   yy(n + 1) +=   h^k/fa(k)*yd(k); 
endfor #k 
#####################################################
################################### 
 
endfor #END 
err = yy-z; 
err2=err.^2; 
mean_Sum_Sqr_Err = sum(err2)/END 
Tool completed successfully 
 
16. Result summary 

Order of derivative Mean SumSqr Err 
1 0.1671 
2 7.4490e-08 
3 1.8619e-14 
4 3.0144e-21 
5 6.4282e-24 
6 6.4282e-24 
7 6.4282e-24 
8 6.4282e-24 
8 6.4282e-24 
9 6.4282e-24 
 
Note Just 2nd derivative err give sprisely little errhas derivative order 8 and 9 has same err 



17. Clock Termination  
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A back plane widely used in a significant server in digital comunication system to make it adaptive to customer 
request with a primary board and optional secondary bard to customer need 
It's has nonle passive component like RLC butit's required clocok quality Some system ill behave due to bad 
clock quality 
In my case to fix this problen for a main product XLI had it ioption card FTM( Frenquency Time measurement ) 
it report double frequncy for poerline frequency of 50 Hz due to  clock reflection per bad termination  
I used transmission line to model clock trace and MLab simulation is matched with the real clock problem on  
A model of transmission line is composed of inductor L in series[ xl * ] and capicitor in parallel[shunt] Cper 
lengthx  xl *

Note r is distributed series resistance while g is distributed shunt conductanc so  
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so we have v eq 
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and i eq 
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Similarly we have 
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Eventually we have an system of dif eq 
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Simply simplify the eq system by Laplace transform 
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