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1. Extrema of Functions with Equality Constraints: Langrange Multiplier 

 

Theorem 1.1:  

 A necessary condition for 
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where 

 L fx x g x, ./         (1.3) 

Proof: 

Since f x  has an extremum, the total differential of f must be equal to zero, ie. 
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As g x 0   , we have 
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By Eq.(1.3), the total differential of L is 

 dL df dx x g x, .          (1.6) 

or 

 dL
L

d
L

dx
x

x, . .
/ /




   







 (1.7) 

From Eqs.(1.4) to (1.6), we get 

 dL  0 (1.8) 

This equality must be hold for any x and , so Eq.(1.2) is achieved. 

 Q.E.D. 
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Remark 1.1:  

 

 Note that the constraint is 

 g x 0     

if 

 g x c     

then let 

 g x g x c       

or 

 g x c g x       

and we have the required constraint, that is g x 0   . 

 

 

2. Steepest Descent Method 

 

 For a function f nx :  , and a given point x k , our interest is to find the next point x k1 to minimize 

the function f. Let 

   x xk k1  (2.1) 

then the Taylor expansion of f at x k  is 

 f f f f fk k k k k k kx g Q                 / / / /. . . . .1
2

2 1
2  (2.2) 

and our concern is to find  to minimize f. 

 

Let  and u be the magnitude and the unit vector of   respectively, then Eq.(2.2) can be read as 

 f fk k k kx g u u Q u       . . ./ /1
2

2
  (2.3) 

or 

 f f f fk k k kx u      . . ./ / /  1
2

2
 (2.4) 

so 

 f fk k k k

/ / / / /. , . . g u u Q u  (2.5) 

 

The use of the negative of the gradient as a direction for minimization was first made by Cauchy in 1847. It 

is known as the steepest descent method since for the same magnitude of  , this direction produces the 

largest decrease at that point. We have the following theorem for this method 
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Theorem 2.1:  

The gradient vector represents the direction of the steepest ascent, and its opposite direction is the steepest 

descent. 

Proof: 

For a function f n:  , we have the differentiation 

 df
f

x
dx f d

i

i
i

n

  





1

/ . x  (2.6) 

If u denotes the unit vector in the direction of dx, we have 

 d dsx u .  (2.7) 

where 

 ds d ds dxi
i

n

  

x 2

2 2

1

 (2.8) 

and 

 u u u2 1 1  /  (2.9) 

Then Eq.(2.6) can be read as 

 
df

ds
f  / .u   

or 

  u g u   /  (2.10) 

where 

  u g    
df

ds
f,  (2.11) 

To find a direction u to extremize Eq.(2.10), the Lagrange multiplier method is used with 

 L u u u u, /         1  (2.12) 

where  is the Lagrange multiplier to be determined. We have the necessary condition as 
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g u 0 u g

g
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u
g

     













2 2
2
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 (2.13) 

 




L
      1 0 1 1u u u u u/ /  (2.14) 

so Eq.(2.13) becomes 

   1
2 g  (2.15) 

(1) If   0, then Eq.(2.15) becomes 

    1
2 g u

g

g
 (2.16) 

From Eq.(2.10), we have 

     g 0 0
df

ds
 (2.17) 

so it is the steepest ascent direction. 
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(2) If   0, then Eq.(2.15) becomes 

      1
2 g u

g

g
 (2.18) 

From Eq.(2.10), we have 

      g 0 0
df

ds
 (2.19) 

so it is the steepest descent direction. 

 Q.E.D. 

 

 

3. Newton Method 

 

Theorem 3.1: Newton Method 

 Consider the second-order approximation to f based on the Taylor expansion 

 f fk k k k k k k kx g Q        / / . .1
2  (3.1) 

if Qk  is positive-definite, then 

 Minimize


 
k

f k k k k kx Q g      1  (3.2) 

this is the exact line-search condition. 

Proof: 

A necessary condition for an extremum is 

 



 

f

k

k k k k k k       0 g Q 0 Q g1   

since Qk  is positive-definite and by Eq.(2.5), this extremum is a minimum. 

 Q.E.D. 

 

Remark 3.1: Newton method for univariable function 

 The minimum is a solution of the equation 

 g x 0     

and the Newton method gives 

 x x x Q g x x g x g xk k k k k k k k k
      1

1 1      .   

for a univariable function, we have 

 x x
g x

g x
k k

k

k

  1

 
 /

  

as we have known. 
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Theorem 3.2: Convergence of Newton Method 

 If  k  forms a basis which spans the vector space of x, then the Newton method terminates after n 

iterations . 

Proof: 

 Let x x* and 0  be the minimum and a given starting point. Since   0 1 1, , , n  are n independent vectors 

to form a basis, we have 

 x x x x* *    








 0
0

1

0
0

1

 i i
i

n

i i
i

n

   (3.3) 

If we define 

 x xk j j
j

k

 




0
0

1

   (3.4) 

then we obtain 

 x xk k k k  1    (3.5) 

thus 

 x xn 
*  (3.6) 

 Q.E.D. 

 

Remark 3.2:  

 Newton direction  k k k  Q g1  is a descent direction since 

 
df

d
fk k k

k

k k k k k k k

x
g g Q g


     




 

  / / /. 1 0   

as Qk  is positive-definite and so is Q k

1. 

 

 

4. Quasi-Newton Methods 

 

The main disadvantage of Newton method is that the Hessian (second derivative matrix) must be supplied. 

However methods closely related to Newton method can be derived when only the gradient (first derivative 

vector) is available. The most obvious is a finite difference Newton method in which increments hi  in each 

coordinate direction e i  are taken sa as to estimate Qk  by differences in gradient. That is to say, the matrix Q  

whose i-th column is 

 
*Q

g x e g x
i

k i i k

i

h

h


    
  

Then Q  is made symmetric by taking 1
2
 Q Q T  and the resulting matrix is used to replace Qk  in Newton 

method. Disadvantage of this method is the resulting matrix may not be positive-definite (requiring 

modification technique), n gradient evaluations are required to compute Q . The conjugate-gradient method 

(Hestenes and Stiefel 1952, Fletcher and Reeves 1964) is in this direction where the computation of Q is 

avoided by using a line-search, but the positive-definiteness of Q is not guaranteed, so the necessary 

condition for the existence of a minimum is not satisfied. 
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The above disadvantages are all avoided in the much more important class of quasi-Newton methods where 

an estimate of the Hessian Qk  is maintained to be symmetric and positive-definite. The Hessian is estimated 

using the first-order approximation of the gradient 

 g x g x Qk k k k  1      (4.1) 

 

To ensure the minimum due to truncation of the Taylor series in the function and its gradient, the quasi-

Newton method minimizes the function in the direction sk  by introducing a step length  and a search 

direction sk  

 x x sk k k  1    

where  is determined as 
 Minimize


f k kx s  (4.2) 

Remark 4.1:  

Therefore, in the rest of this note, we use 

  k k k k k k k k  s x x g g    1 1,  (4.3) 

 

Quasi-Newton methods uses directly the inverse of Qk  to simplify the process, so the exact line-search 

condition Eq.(3.2) becomes 

 s H g H Qk k k k k   , 1  (4.4) 

From Eq.(4.1), the quasi-Newton condition below must be satisfied 

  k k k H 1  (4.5) 

Since Eq.(4.5) can be determined after the line search, Hk1  is used instead of Hk  in order to estimate Qk
1. 

 

Thus a quasi-Newton algorithm is as below 

(0)  H I x0 0 , : given  

(1)  s H gk k k   

(2)  Minimize


f k kx s  , line search 

(3)  x x s xk k k k k    1    

(4)  H H Ek k k  1  

where Ek  to be determined such that 

 Hk1  is symmetric and positive-definite and converges to Q k
1 (the Newton method); 

  k 's are linear independent (convergence of Newton method) 

 

We will find the smallest correction Ek  in the sense of some norm. To a certain extent, this would tend to 

keep the elements of H from growing too large, which might cause an undesirable instability. The simplest 

type of norm is 

 N E traceij
i j

T

E E EE     2

,

 (4.6) 
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If we include one degree of freedom for flexibily, E is transformed as 

 N traceW E WEWE    /  (4.7) 

where 

 W W /  (4.8) 

then we have the following theorem 

Theorem 4.1: BFGS Formula (Broyden, Fletcher, Greenstadt/Goldfarb, Shanno) 

 If 

  H H Ek  1  (4.9) 

then a solution of the problem 
  Minimize

E
WE  (4.10) 

subject to the conditions 

 E E ET and    (4.11) 

is 

 H H
H H H
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/ /

/
.  (4.12.b) 

where all the subscript k in LHS are omitted, and 

         H g g s, ,k k1   (4.13) 

and W is chosen such that 

 W W W/ ,    (4.14) 

Note that conditions in Eq.(4.11) correspond to the symmetry and the quasi-Newton conditions. 

Proof: 

 From Eq.(4.9), we have from the quasi-Newton condition Eq.(4.5) 

 H H E E H H Hk k        1 1           

and Eq.(4.14) is equivalent to 

 W H 

k 1

1  (4.15) 

since by the quasi-Newton condition, we have 

 H H Wk k 
   1 1

1       

 After squaring the norm, a suitable Lagrangian function is 
 L          1

4
1
4trace trace trace trace traceWE WE E E W E WE WE E E W E/ / / / / / / /                   

  (4.16) 

where   is a Lagrange multiplier matrix for the contraint E E/   (use of the trace is just a convenient way 

of summing  ij ij ijE E/   over al i, j) and / W  is a vector Lagrange multipliers for the constraint   E . L  

must be stationary with respect to E, and  . Setting derivatives of  with respect to  and  to zero just 

gives the constraints in Eq.(4.11). 
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For the derivative with respect to E, using Frechet derivative operator with the last term is dE /  and the 

property 

 trace trace trace traceAB BA A B B A         / / / /   

we have 
 df d trace d trace d trace d trace d trace d1 2E E W E WE WE W E WEW E W EW E WEW E, / / / / / / /         

 df d trace d d trace d d2 E E E E E E, / / / / / /           

 df d trace d trace d3 E E W E W E, / / /        

so 
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E
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WE W W 0
 

   

   





1
2

1
2

 

 

/ /

/T T
  

thus, by Eq.(4.14) we can solve for E 

 WEW W W W W W W E           / / / / / /  (4.17) 

substituting into   E , we solve for  
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 (4.18) 

In the sequel, note that 

    / /  (4.19) 

Pre-multiplying Eq.(4.18) by  /  gives 
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so Eq.(4.18) becomes 
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Substituting into Eq.(4.17) gives 
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 Q.E.D. 

 

Theorem 4.2: Dual BFGS Formula 

 If 

 B H 1 (4.21) 

then the BFGS formula has the dual 

 B B
B B

B
k   1



 



 

/

/

/

/
 (4.22) 
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Proof: 

 Multiply Eqs.(4.12) and (4.22), using Eq.(4.21), we have 

 B H Ik k  1 1   

 Q.E.D. 

 

Theorem 4.3: Positive-Definiteness of BFGS Formula 

If    k k k ie/ /, ,  0 0 , the BFGS formula preserves positive definite matrices H. 

Proof: 

Since H H k  is positive-definite, so is B B k , it can be decomposed using Choleski factors as B L L T , 

then 

 z B
B B

B
z z z a a

a b

b b

/
/

/

/

/

/
/

/

/

/

/
 





 





  



 



 



 

 2

  

where  a L z b L / /,  . The first term is positive by the assumption, the last 2 terms is positive by Cauchy 

inequality. Thus the proof is completed. 

 Q.E.D. 

 

For a quadratic function, Theorem 3.2 guarantees the Newton method with the exact line-search will 

terminate (reach the minimum) after n iterations for n linear independent directions   0 1 1, , , n . The 

theorem below also guarantees the BFGS method will terminate after n iterations and H will converge to Q1 

on a quadratic function. 

 

Theorem 4.4: Convergence of BFGS Method 

 The BFGS method with the exact line-search will terminate after n  iterations on a quadratic function, 

and the following hold for all i n 1 2, , ,  

Conjugacy  i j j i i/ , , , ,Q    0 1 1 2 1  , for all subset (4.23) 

Quasi-Newton condition  j i j j i i H 1 1 2, , , , , for all subset (4.24) 

Q1 Convergence H Qn
1

1 (4.25) 

Proof: 

 Consider a quadratic function 

 f cx x Qx b x    1
2

/ /  (4.26) 

so 

    f x g x Qx b     (4.27) 

thus 

 x x Q g gi i i i i i i      1 1    

or 

  i i i i  g g Q1  (4.28) 
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where  i  minimizes the function in the direction s i  (exact line search) 

 Minimize .
i

/ /







f

df

d
fi i i

i i i

i

i i i i i ix s
x s

x s s g s 


          1 0   

so the exact line-search condition at point x i  is 

 g i i 1 0/   (4.29) 

 

In the sequel, we employ the following property 

 u v v u u v n/ / , ,    (4.30) 

(1) By Eqs.(4.2) and (4.28), we have 

    i i i i i i i i i       1 1 1 1 1 1
/ / /Q s g H      (4.31) 

From the BFGS formula in Eq.(4.12), we have 
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  1 1 1 11/ /

/

/

/
/.Q g

H H
g  (4.32) 

By Eq.(4.29), we have 

   i i i i   1 1 0/ /Q g  (4.33) 

 

Next, we will prove  i i  1 1 0/ Q , by Eqs.(4.28), (4.29) and (4.33), we have 

 g g Q g Qi i i i i i i i i        1 1 1 1 1 0/ / / /         

so from Eq.(4.32), we get 

   i i i i i     1 1 1 1 0/ /Q g   

By induction we obtain Eq.(4.23) and the exact line-search condition holds for all subspace of x i  

 g i j j i/ ,   0 1 (4.34) 

 

(2) By the quasi-Newton condition Eq.(4.5), we have 

  i i i H 1  (4.35) 

For j i 1, we have 

 H H
H H H H H H

i i i
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i i
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/ /
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/

/

/ /

/
. .   

By Eqs.(4.28) and (4.23), we have 

    i i i i
/ /

  1 1 0Q   

and 

      i i i i i i i    1 1 1 0/ / /H Q   

so 

  i i i  1 1 1H   
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By induction, we obtain Eq.(4.24). 

 

(3) By Eqs.(4.24) and (4.27), we have 

   j i j i j j i   H H Q , 1  

since j n 1 2, , , , we must have 

  j n j H Q1   

thus Eq.(4.25) is obtained. 

 Q.E.D. 

 

Thus the quasi-Newton BFGS algorithm is 

 

(0) Initialize 

 x H I0 0,    

(1) Direction 

 s H gk k k    

(2) Line search 
 Minimize

 k

f k k kx s    

 x x sk k k k  1    

(3) Update Hessian (BFGS) 

 H H
H

s

ss

s

s H H s

s
g gk k k   





 





  1 11

 

 

 




/

/

/

/

/ /

/
. ,   

(4) Terminate 

 If gk 1  , then terminate, else goto step (1) 

 

Remark 4.2:  

 To save memory, let 

 H Ik    

in the update formula of BFGS, we have 

 s H g g
s

s s

s
g

s s

s
gk k k k

k k

k k

k k

k k

k
k k k k

k k

k          
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/

/

/

/

/ /

/
  

but by Eq.(4.29), we have 

 s gk k

/

 1 0   

so 

 s g
s

s
g g s

g

s
k k

k k

k k

k k k k k
k k

k k

     
      1 1 1 1 1 1

1







/

/

/

/
,    

we will see in the sequel that this is the conjugate-gradient formula. 
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5. Conjugate-Gradient Method (Hestenes and Stiefel 1952, Fletcher and Reeves 1964) 

 

Suppose we want to find the minimum of a second-order approximation Taylor expansion 

 f x c x x Qx   / /1
2  (5.1) 

so 

 g x c Qx     (5.2) 

and Q: symmetric, positive-definite second-order derivative matrix. 

 

Given k 1 linearly independent vectors s s s0 1, , , k

n . Let Sk

n k  1 
 be the matrix with columns 

s s s0 1, , , k . We have 

 Minimize f Minimize
k kk k k k k k k k

w w
x S w w S g w S QS w x g Qx

  
    

1 1

1
2    / / / / /  (5.3) 

then the minimum is 

 w S QS S g 


k k k k

/ /  1
 (5.4) 

so 

 x x S S QS S gk k k k k k k


 1

1/ /   (5.5) 

Note that 

 S g S c Qx S c Qx QS S QS S g S g S gk k k k k k k k k k k k k k k

/ / / / / / /

 


    



   1 1

1
0      

so 

 g sk i i k  1 0 0/ ; , ,   

by induction 

 g sj i i j/ ; 0  (5.6) 

 

Great simplifications occur in Eq.(5.5) when the matrix S QSk k

/  is diagonal. Suppose that k 1 vectors 

s j j k, , , 0    are mutually conjugate with respect to the matrix Q, ie. conjugacy condition is 

 s Qsi j i j k/ ; : , , 0 0   (5.7) 

When Eq.(5.7) holds, Eq.(5.5) becomes 

 x x sk k k  1   (5.8) 

where 

  k
k k

k k

 
g s

s Qs

/

/
 (5.9) 

From Eq.(5.2), we have 

  i i i i i i i     g g Q x x Qs1 1    (5.10) 

By Eq.(5.7), we obtain the orthogonality condition equivalent to the conjugacy condition 

  j i i j/ ,s  0  (5.11) 
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Now we create a set of mutually conjugate directions by taking s g0 0   (the steepest descent direction) and 

computing each subsequent direction as 

 s g s g sk k k k k i i
i

k

   


     1 1 1 1
0

   (5.12) 

By Eq.(5.6), we have 

 g gj i i j/ , 0  (5.13) 

For the conjugacy condition, we must have 

 0 1 1 1     s Qs g s Qsk k k k k k
/ /

    

from Eq.(5.1), we obtain 

 k
k k

k k

k k

k k


    1

1 1g Qs

s Qs

g

s

/

/

/

/




 (5.14) 

by Eqs.(5.11) to (5.13), we have 

 s s g s g g g g g gk k k k k k i i
i

k

k k k k k k k
/ / / / / /      





      






0

1

1    

so 

 k
k k

k k

k k

k k


     1

1 1 1g

s

g g

g g

/

/

/

/




  

 

Thus the conjugate-gradient algorithm is 

 

(0) Initialize x H I0 0,    

(1) Direction 

 s H gk k k    

(2) Line search 
      Minimize

 k

f k k kx s      x x sk k k k  1    

(3) Update direction 

 s g sk k k k    1 1 1   

where 

 k
k k

k k

k k

k k

k k k
  

    1
1 1 1

1

g

s

g g

g g
g g

/

/

/

/
,




   

(4) Terminate 

 If gk 1  , then terminate, else goto step (1) 

 

Remark 5.1:  

 k
k k

k k


 1

1 1g g

g g

/

/
: Fletcher-Reeves (5.15.a) 

 k
k k k

k k


 


1
1 1g g g

g g

  /

/
: Polak-Ribiere (5.15.b) 

 k
k k k

k k k


 







1

1 1

1

g g g

d g g

/

/

 
  : Hestenes-Stiefel (5.15.c) 
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6. Sum of Squares 

 

Consider the function 

 f Fi
i

m

x x F x      

1

2
2

1

1
2

2
 (6.1) 

where 

 F x x x      F Fm1 , ,
/

  (6.2) 

then 

 












f

x
F

F

x xj

i
i

ji

m

j

 



1

F
F x

/

   (6.3) 

and 

 g x x
F

x
F x J x F x            f





/
/  (6.4) 

where 

 J x
F

x

x

x

   






























 

 

   

   

F

F

F x F x

F x F xm

n

m m n

1 1 1 1

1





  



 (6.5) 

 

For the second-order derivative matrix, we have 

 


 











 











 

2 2

1

f

x x

F

x

F

x
F

F

x x x x x xk j

i

k

i

j

i
i

k ji

m

k j k j

 






  




F F
F

F/
/  (6.6) 

and 

 Q x x J x J x F x F x J x J x G x                       2 2f / / /  (6.7) 

 

6.1. Gauss-Newton Method 

 

From the Newton condition 

 Q gk k k    (6.8) 

we have from Eqs.(6.4) and (6.7) 

 J J G J Fk k k k k k

/ /     (6.9) 

If F 0k  , then G 0k  , by Eq.(6.9) we obtain 

 J J J Fk k k k k

/ /     

or 

 J J F 0k k k k

/      (6.10) 

hence an algorithm 

 x x J J J Fk k k k k k k k


   1

1
 , / /    
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6.2. Levenberg-Marquardt Method (Levenberg 1944, Marquardt 1963) 

 

We modify Eq.(6.9) to have 

 J J I gk k k k k k
/      (6.11) 

thus 

 




k

k

L M G N

L M S D

    

     

0

steepest descent    

hence an algorithm 

 x x J J I gk k k k k k k k k


    1

1
 , /     

 

 

7. Cubic Line Search 

 

The most efficient line search is the cubic interpolation proposed by Davidon in 1959 for the following 

problem 

 Minimize Minimize 
h

k k
h

f h f hx d       

Based on h andk k, x d , this technique finds 2 points x xp qand  that bracket the minimum then uses 

h f f f fp p q q,  ,  ,  , / /   to fit the following cubic polynomial in order to compuite the minimal step h* 

  h a bh ch dh     2 3  (7.1) 

  / h b ch dh    2 3 2 (7.2) 

  / / h c dh   2 6  (7.3) 

then the minimum is the solution of  / *h   0  and  / / *h   0 , ie. 

 h
c c bd

d

* 
  2 3

3
 (7.4) 

since 

  / / *h c bd   2 32   

We have 

 


. ./f h
df

dh
f h hp k k

T
p k k

T          x d d g x d d  (7.5) 

thus 

   ./ /f fp p k

T

p k

T  0   g x d g d  (7.6) 

   ./ /f f h hq p k
T

q k
T      g x d d g d  (7.7) 

Then a, b, c, d  are solutions of the equation set below 

 

 

 

 

 

/ /

/ /

f f a

f f b

f h f a bh ch dh

f h f b ch dh

p

p

q

q

0

0

2 3

2 3

2

 
 

 
 

 

 

    

   











 (7.8) 
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so 

 a f b f c
z f

h
d

f f z

h
p p

p p q   



 

 ,  ,


,
 

/
/ / / 2

3 2
 (7.9) 

where 

 z f f
f f

h
p q

p q
  


 

 
/ /

3 
 (7.10) 

The minimum Eq.(7.4) becomes 

 h h
w z f

z f f
h

w z f

z f f

p

p q

p

q p

*
/

/ /

/

/ /



 



 


 

 


 

 2 2
 (5.16) 

where 

 w z f fp q 2  / /  (7.11) 

 

The choice of h is at our discretion. If  /fp  0  we would take h  0, ie. take a step in the direction of 

decreasing f h  ; otherwise we would take h  0. The magnitude of h is such that the interval 0,h  includes 

the minimum. This will be so if  f fq p  or if  /fq  0 . When neither of these conditions is satisfied, we double 

the value of h, repeatedly if necessary, until our interval does bracket a minimum. 

 

The problem of finding an initial value for h remains. There are real difficulties in finding a value that will 

be satisfactory for all problems. Davidon and Fletcher and Powell suggest 

 h
f f

f

p m

p

0 1
2

 









min ,
 

 /

 
 (7.12) 

where fm  is an estimate of the minimum of f h  . 

h hh*
h*

fq

fq

fp

fp

0 0
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The cubic algorithm is below 

(0)  Guess fm  

  Let x xp k  

 

(1)  Find the first point P such that  /fp  0  

  Repeat 

     ,  , min ,
 


/

/
f f f h

f f

f
p p p p k

T p m

p

  









x g d   
1

2
 

   x x dp p kh      // Reverse serach direction to get P 

  Until fp

/  0  

 

(2)  Find the second point Q such that  /fq  0  or  f fq p  

  Repeat 

   h h  

   x x dq p kh    

     ,  /f f fq q q q k
T x g d   

   h h 2       // Double step to get Q 

  Until   /fq  0  or  f fq p  

 

(3)  Find the minimum after having 2 points 

  z f f
f f

h
p q

p q
  


 

 
/ /

3 
 

  w z f fp q max ,  / /0 2   

  h h
w z f

z f f

p

q p

*

/

/ /



 


 

 2
 

 

 

8. Conclusion 

 

The steepest descent method minimizes a function on its first-order approximation in Taylor series, while the 

Newton and quasi-Newton methods use the second-order approximation. The main advantage of the Newton 

method is it reaches the minimum point after n iterations from any given point (convergence). The main 

disadvantages of the Newton method are requirement of an inverse of the positive-definite Hessian (second 

derivative matrix) which is mathematically expensive and a mechanism to guarantee the positive-

definiteness. 
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The quasi-Newton method does have the advantage (convergence) and does not have the disadvantages 

(Hessian) of the Newton method.  The main features of quasi-Newton method are 

 H i  is maintained to be symmetric and positive-definite; 

 H Qi i 1 after n iterations from any given symmetric and positive-definite H0  for an exact line-search 

 x xk 
* after n iterations from any given point x 0  for an exact line-search 

 

For an inexact line-search, the number of iterations increases accordingly. 

 

When there is a memory limitation we can use the conjugate-gradient method, but it is slower than the quasi-

Newton method since it estimates Hk  as I in the BFGS update formula. 

 


